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Background: PhD in particle physics



2

Postdoc 1: Biophysical modelling
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Postdoc 1: Biophysical modelling
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Postdoc 2 - present: latent variable modelling of dementia

Build latent variable models (LVMs) that can leverage 
multi-modal data to characterise and predict progression 
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The big idea: LVM in neuro-degeneration and development

Build latent variable models (LVMs) that can leverage 
multi-modal data to characterise and predict progression 
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The big idea: ML in neuro-degeneration and development

Build latent variable models (LVMs) that can leverage 
multi-modal data to characterise and predict progression 



4

High level: disease progression modelling
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High level: disease progression modelling

Cool!

But entirely qualitative...
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Data-driven disease progression modelling

Phenomenological – model disease progression in terms of 
observable changes in markers

e.g., how does the brain change over the course of Alzheimer’s?

Mechanistic – model disease progression in terms of underlying 
mechanisms

e.g., why does the brain change over the course of Alzheimer’s?
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Low level: disease progression modelling
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Low level: disease progression modelling
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Data: neuroimaging in humans

Typically use magnetic resonance imaging (MRI) data of various types as inputs to models
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Classic example: the Event-Based Model (EBM)
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Classic example: the Event-Based Model (EBM)



4

Classic example: the Event-Based Model (EBM)
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Classic example: the Event-Based Model (EBM)
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Classic example: the Event-Based Model (EBM)

Cool!
 

But what about time?
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Continuous time hidden Markov model (CTHMM)
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Continuous time hidden Markov model (CTHMM)

Wijeratne et al. Imaging Neuroscience 2023
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Temporal Event-Based Model: provenance

Wijeratne et al. Imaging Neuroscience 2023
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Example: the Temporal Event-Based Model (TEBM)

The TEBM is a generative model of observations (e.g., biomarkers) 
conditional on latent variables (e.g., disease states)

Wijeratne et al. Imaging Neuroscience 2023
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Example: the Temporal Event-Based Model (TEBM)

The TEBM is a generative model of observations (e.g., biomarkers) 
conditional on latent variables (e.g., disease states)

Graphical model

Wijeratne et al. Imaging Neuroscience 2023



4

Application: learning Alzheimer’s disease timeline

First timeline of biomarker events in Alzheimer’s disease
Wijeratne et al. Imaging Neuroscience 2023
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Application: learning Alzheimer’s disease timeline

First timeline of biomarker events in Alzheimer’s disease
Wijeratne et al. Imaging Neuroscience 2023

Cool! 

But permutation inference 
using MCMC is slow… 

Restricted to small models
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Optimal transport

Find the optimal mapping P that minimises the 
cost of transporting probability distribution a to b
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Idea: optimal transport for disease trajectory modelling

Transport people to their optimal (latent) stage
along an event-based disease trajectory
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Variational event-based model: key idea

Reframe the discrete sequence s as a permutation matrix S belonging to the Birkhoff polytope

Wijeratne & Alexander, NeurIPS 2024, doi: arXiv:2410.14388 
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Aside: Birkhoff polytopes

Reframe the discrete sequence s as a permutation matrix S belonging to the Birkhoff polytope

Wijeratne & Alexander, NeurIPS 2024, doi: arXiv:2410.14388 
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Variational event-based model

Wijeratne & Alexander, NeurIPS 2024, doi: arXiv:2410.14388 

Input “snapshots” (single observations) from different individuals
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Variational event-based model

Wijeratne & Alexander, NeurIPS 2024, doi: arXiv:2410.14388 

Model likelihood specified by distributions “normality” and “abnormality”
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Variational event-based model

Learn optimal permutation of hidden events and corresponding event sequence

Wijeratne & Alexander, NeurIPS 2024, doi: arXiv:2410.14388 
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Variational event-based model: key ingredients

Enable differentiability by parametrising prior & posterior using Gumbel-Sinkhorn distribution

Entropy-regularised optimal 
transport problem

Hard permutation from Sinkhorn-
Knopp operator

Gumbel-Sinkhorn distribution

Wijeratne & Alexander, NeurIPS 2024, doi: arXiv:2410.14388 

Cuturi. NeurIPS 
2013, doi: 
arXiv.1306.0895

Mena et al. ICLR 
2018, doi: 
arXiv.1802.08665

Sinkhorn & Knopp. 
Pacific Journal of 
Mathematics, 1967
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High level: Disease progression modellingFast inference

>1000 x faster than baselines,
which use maximum likelihood 

Wijeratne & Alexander, NeurIPS 2024, doi: arXiv:2410.14388 
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High level: Disease progression modellingRobust to noise

Maintains inference accuracy 
with increasing noise

Wijeratne & Alexander, NeurIPS 2024, doi: arXiv:2410.14388 
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High level: Disease progression modellingReal data: pixel-level atrophy using tensor-based morphometry data

Use ADNI dataset “TBM Jacobian
Maps MDT-SC”

Cross-sectional TBM maps 
from 816 individuals 

(299 controls, 
399 mild cognitive impairment,

188 AD) 

https://www.fil.ion.ucl.ac.uk/spm/doc/books/hbf2/pdfs/
Ch6.pdf

*Jacobian Map ==  Deformation tensor
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High level: Disease progression modellingPixel-level progression Alzheimer’s disease (AD)

New insights into tissue-level AD progression
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High level: Disease progression modellingPixel-level progression Alzheimer’s disease (AD)

New insights into tissue-level AD progression

Wijeratne & Alexander, NeurIPS 2024, doi: arXiv:2410.14388 
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High level: Disease progression modellingPixel-level progression Alzheimer’s disease (AD)

New insights into tissue-level AD progression

Wijeratne & Alexander, NeurIPS 2024, doi: arXiv:2410.14388 
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High level: Disease progression modellingPixel-level progression Alzheimer’s disease (AD)

New insights into tissue-level AD progression

Wijeratne & Alexander, NeurIPS 2024, doi: arXiv:2410.14388 

Cool! 

But… phenomenological.
What about mechanisms?



12

High level: Disease progression modellingMechanistic modelling of disease propagation

Courtesy of Sanduni Pinnawala
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High level: Disease progression modellingMechanistic modelling of disease propagation

Courtesy of Sanduni Pinnawala



12

High level: Disease progression modellingMechanistic modelling of disease propagation
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High level: Disease progression modellingMechanistic modelling of disease propagation

Courtesy of Sanduni Pinnawala
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High level: Disease progression modellingMechanistic modelling of disease propagation

Courtesy of Sanduni Pinnawala
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High level: Disease progression modellingDetecting model mis-specification

Courtesy of Sanduni Pinnawala
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High level: Disease progression modellingDetecting model mis-specification

Courtesy of Sanduni Pinnawala
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Summary and next steps

 Probabilistic models can be used to learn hidden information in 
diseases

 Optimal transport formulation offers many benefits over standard 
maximum likelihood approaches

 Physics-guided/integrated/informed… machine learning gives 
flexibility

 But… identifiability, validation (ground truth?), assumptions, ...

Many interesting theoretical avenues…
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Summary and next steps

 Probabilistic models can be used to learn hidden information in 
diseases

 Optimal transport formulation offers many benefits over standard 
maximum likelihood approaches

 Physics-guided/integrated/informed… machine learning gives 
flexibility

 But… identifiability, validation (ground truth?), assumptions, ...

Many interesting theoretical avenues…

Just need to pick the optimal route! 
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Backup: uncertainty
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