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A probabilistic perspective on modelling disease progression
(with some optimal transport)
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Our research: bridging computer and life sciences
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* Real data are dependent on the detector
used to measure them

Bring data back to their natural state by
applying hypothesis-driven corrections EPOS LHC =", 500200, MoV
derived from simulation ) TETTTrIrre

Noz2(pT > 250 MV, "<285) |
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Postdoc 1: Biophysical modelling

The Chemical Basis of Morphogenesis

A. M. Turing

Philosophical Transactions of the Roval Society of London. Series B, Biological Sciences, Vol
237, No. 641. (Aug. 14, 1952), pp. 37-72.
# =F(uyv)—dy+D,Au
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Computational Modeling
‘

i _

lappled® pattern as resulting from a type (a) morphogen system.
§9, 11,

Frours 2. An example of a 'c
A marker of unit length is shown, See text,



Postdoc 1: Biophysical modelling

Vavourakis, Stylianopoulos, Wijeratne (2018) PLOS Comp

Drug found target
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day 20

Injection: low affinity | / I
day 10 i
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Postdoc 2 - present: latent variable modelling of dementia

Build latent variable models (LVMs) that can leverage
multi-modal data to characterise and predict progression

Snapshots
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The big idea: LVM in neuro-degeneration and development

US

Build latent variable models (LVMs) that can leverage
multi-modal data to characterise and predict progression
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The big idea: ML in neuro-degeneration and development

Build latent variable models (LVMs) that can leverage
multi-modal data to characterise and predict progression

Test data

Snapshots )\
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High level: disease progression modelling

http://adni.loni.usc.edu/study-design/#background-container
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High level: disease progression modelling 119
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http://adni.loni.usc.edu/study-design/#background-container
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A picture of how components of a disease progresses over time
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Data-driven disease progression modelling




Low level: disease progression modelling llg
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® Undirected graphical models (a.k.a. Markov networks)
(o)
(B—4)
()

® Directed graphical models (a.k.a. Bayesian networks)
e Directed acyclic graph (DAG)

N

® Directed cyclic graph

@
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Low level: disease progression modelling IE
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® (Circles: random variables.

® Blue boxes: “plates”, signifies that the contents of the box
should be repeated number of times in bottom corner.

e Bullet: variables that are not treated as uncertain.
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Data: neuroimaging in humans
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Typically use magnetic resonance imaging (MRI) data of various types as inputs to models
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Classic example: the Event-Based Model (EBM)
EBM describes disease progression as a sequence of abnormality events
Events represent the change of a biomarker from a healthy to abnormal state

Learns from cross-sectional data of any type (imaging, clinical, biofluid...)

]
[=]
o

o B ‘
o 3 e
4 -0
- § ~ / /
02 Woo
—Event 1 E E
L —Event 2 2 1

o

Disease Progression

Simple example: 2 event measures

More patients have greater abnormality in Event 2
than Event 1

Event
S E-verit Ik-ﬂea-sure

—Event 2 measurably abnormal before Event 1

20 k1]
Patient number

Fonteijn et al. Neurolmage (2012) DOI: 10.1016/j.neuroimage.2012.01.062 6
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Classic example: the Event-Based Model (EBM)

More formally: EBM is a generative model of observed data from a hidden sequence

data  uniform prior

sequence prob. prob.
Abnormal Healthy

* The EBM needs likelihood distributions for healthy and abnormal individuals

—Learn directly from data

Fonteijn et al. Neurolmage (2012) DOI: 10.1016/j.neuroimage.2012.01.062 7



Classic example: the Event-Based Model (EBM) I-B
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1. Fit mixture models to 2. Calculate likelihoods of normality (event not
biomarkers occurred) and abnormality (event occurred)

2
Subject

3. Estimate most likely sequence by gradient
ascent and Markov Chain Monte Carlo

- ®666

Event-based model

3

Positional variance diagram . . . .

Fonteijn et al. Neurolmage (2012) DOI: 10.1016/j.neuroimage.2012.01.062



Classic example: the Event-Based Model (EBM)

Brain 2014: 137, 2564-2577
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A. L. Young et :
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Classic example: the Event-Based Model (EBM)

Brain 2014: 137; 2564-2577

A Whole population E Whole population
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Continuous time hidden Markov model (CTHMM) llg

UNIVERSITY
OF SUSSEX

What's a Continuous Time Hidden Markov Model (CTHMM)?

Markov Model: a stochastic description of a sequence of observable events,
where the probability of each event depends only on the previous state
(ie. the probability is conditional on the previous state; cf. Poisson process)

Andrey Andreyevich Markov (14" June 1856 — 20" July 1922)



Continuous time hidden Markov model (CTHMM) IE
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CTHMMSs can be used to estimate state durations
Problem with Event-Based Model (EBM) — no time between events
Realised EBM is essentially a state-space model

—Reformulate EBM as a special CTHMM: Temporal EBM (TEBM)

(a) CTHMM (b) EBM (c) TEBM
J N T; T; kj,e I
P(Y0,S) =[] | Pkja=o) [ Pkjalkje—1) [T ] P(Yiialkin. 02.8) ] P(Yijilkse 05.S)
j=1 | k=0 t=] $=( f=1 i=k; . +1

Wijeratne et al. Imaging Neuroscience 2023
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Temporal Event-Based Model: provenance

* Guided by this 2014 paper on a continuous-time hidden Markov disease progression model

Unsupervised Learning of Disease Progression Models

Klang Wang David Sontag Fei Wang

IBM Hesearch New York Unnversity IBM Research
Yorksown Heghts, NY New York, NY Yorkiown Heights. NY
wangxi@us.bm.com dsontag@cs.nyu.edu fwang@us.ibm.com

* Found this 2007 paper deriving a variable-interval continuous-time hidden Markov model

Generator Estimation of Markov Jump Processes based on
incomplete observations non-equidistant in time"
Philipp Metzner, [llia Horenko, Christof Schiitte

Institule of Mathematics I, Free University Berlin

Arnimallee 2-6, D-14195 Berlin, Germany

* Complemented by various algorithmic implementations in this 2016 paper

Efficient Learning of Continuous-Time Hidden Markov Models for
Disease Progression

YU-Ying Liu, Shuang Li, Fuxin | 2 Song, and James M. Rehg

* Can calculate Q(t) using eigendecomposition (fast, requires Q diagonalisable) or
directly using Padé method for matrix exponential (slow)

Wijeratne et al. Imaging Neuroscience 2023
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The TEBM is a generative model of observations (e.g., biomarkers)
conditional on latent variables (e.g., disease states)

(2021). To formulate the TEBM, we make three main assumptions: i) mono-
tonic biomarker dynamics at the group level; ii) a consistent event sequence
across the whole population; and i7i) Markov stage transitions at the indi-
vidual level. We can write the TEBM joint distribution as a hierarchical
Bayesian model using the chain rule:

P(Sa 6@'7 kj,ta Yi,j,t) — P(Sa 61) : P(Y;,j,ta kj,tle)?la S)
— P(S)- P(6,) Plky |S.m,Q) - P(Yealkyn 61, 5) ()

Wijeratne et al. Imaging Neuroscience 2023



Example: the Temporal Event-Based Model (TEBM) llg
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The TEBM is a generative model of observations (e.g., biomarkers)
conditional on latent variables (e.g., disease states)

— « Biomarker 1 — Graphical model
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Wijeratne et al. Imaging Neuroscience 2023
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Wijeratne et al. Imaging Neuroscience 2023
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Optimal transport
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Distribution b
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Find the optimal mapping P that minimises the
cost of transporting probability distribution ato b




Probability

Idea: optimal transport for disease trajectory modelling

Distribution a

i 4

Scrambled population
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Transport people to their optimal (latent) stage
along an event-based disease trajectory
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Variational event-based model: key idea

BNz{X: Xmpn 20 Ymsn€ls..q;4V;

Xmo=1 Vmel,..., N;

] =

1

3
Il

[¥]=

Xmn=1 Vne 1,...,N}.
1

3
[

These linear row- and column-normalization constraints
restrict By to a (N — 1)? dimensional subset of RV *%,

Reframe the discrete sequence s as a permutation matrix S belonging to the Birkhoff polytope

Wijeratne & Alexander, NeurlPS 2024, doi: arXiv:2410.14388
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https://en.wikipedia.org/wiki/Birkhoff_polytope

What's a Birkhoff polytope'? Paffenholz, 2013. arXiv:1304.3948

“The Birkhoff polytope, B, is
the convex polytope in R*N
(where N = n*2) whose points
are the doubly stochastic
matrices, X, i.e., the nxn
matrices whose entries are
non-negative real numbers
and whose rows and columns
each add up to 1.”

—Maps permutation matrices,
X, to geometric objects, B

—The top vertex in Figure 2.1
would have a permutation Figure 2.2. The wedge over a vertex of a pentagon.
matrix like:

[1, 0, O]

- UNIVERSITY
Igg?:_x OF SUSSEX

Reframe the discrete sequence s as a permutation matrix S belonging to the Birkhoff polytope

Wijeratne & Alexander, NeurlPS 2024, doi: arXiv:2410.14388
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Variational event-based model

Snapshots, Y

=1,
l:
g I
" .
B

Input “snapshots” (single observations) from different individuals

Wijeratne & Alexander, NeurlPS 2024, doi: arXiv:2410.14388
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Variational event-based model

L(¢;0) = Eq,(z)v)[logPs(Y|Z) — KL(qs(Z|Y)[|P(Z))]
Snapshots, Y ,
while not converged do
i=1 S
am i M=t
- . . I ‘ _]:4
" n k=1--+k=4
N Update S < V4L(o);
end
A B

Model likelihood specified by distributions “normality” and “abnormality”

Wijeratne & Alexander, NeurlPS 2024, doi: arXiv:2410.14388
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Variational event-based model

L(¢;0) = Eq,(z)y)[logPs(Y|Z) — KL(g4(Z]Y )| P(2))]

Event permutation

Snapshots, Y matrix, S

i=1
-

while not converged do

S j=1
- :
.

l I j=4d k=1 k=4
O k=1---k=4
Update S < V4L(6); Event sequence, s
end s=1{4,1,2,3]
A B - C

Learn optimal permutation of hidden events and corresponding event sequence

Wijeratne & Alexander, NeurlPS 2024, doi: arXiv:2410.14388



Variational event-based model: key ingredients

K(X/71) = argmax (S, X)p + 7H(S).

SEeEBN
o)

M(X) = _}%K(X/T)
[ Cs(N)

GX,7)~K({(X+¢€)/1).
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Entropy-regularised optimal
transport problem

Cuturi. NeurlPS
2013, doi:
arXiv.1306.0895

Hard permutation from Sinkhorn-
Knopp operator

Sinkhorn & Knopp.
Pacific Journal of
Mathematics, 1967

Gumbel-Sinkhorn distribution

logP(Y) > L(¢:6) = Eq, (zv)llogPs(Y|Z) — KL(4(Z|Y)| P(2))
= Eq, () logPs (Y|Z) — KL(Go(X, )| G(X = 0, Tyrcr))].

Mena et al. ICLR
2018, doi:
arXiv.1802.08665

Enable differentiability by parametrising prior & posterior using Gumbel-Sinkhorn distribution

Wijeratne & Alexander, NeurlPS 2024, doi: arXiv:2410.14388




Fast inference

104 J
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50 100 150 200
Number of features

Wijeratne & Alexander, NeurlPS 2024, doi: arXiv:2410.14388

>1000 x faster than baselines,
which use maximum likelihood




Robust to noise

Maintains inference accuracy
with increasing noise

Wijeratne & Alexander, NeurlPS 2024, doi: arXiv:2410.14388
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Real data: pixel-level atrophy using tensor-based morphometry data

Use ADNI dataset “TBM Jacobian
Maps MDT-SC”

Cross-sectional TBM maps
from 816 individuals
(299 controls,
399 mild cognitive impairment,
188 AD)

Figure 6.4: This figure illustrates the volume changes estimated by warping together the images
shown in Figure 6.3. The relative volumes are the Jacobian determinants of the deformation field.
Smaller determinants are obtained when a region of the template maps to a smaller region in the
source image. In this example, they represent regions that have expanded between the early and
late scans. Regions where there are no measurable volume changes have Jacobian determinants
with a value of one.

https://www.fil.ion.ucl.ac.uk/spm/doc/books/hbf2/pdfs/

Ch6.pdf
*Jacobian Map == Deformation tensor
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Pixel-level progression Alzheimer’s disease (AD)

New insights into tissue-level AD progression
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Pixel-level progression Alzheimer’s disease (AD)

New insights into tissue-level AD progression

Wijeratne & Alexander, NeurlPS 2024, doi: arXiv:2410.14388 9



Pixel-level progression Alzheimer’s disease (AD)
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New insights into tissue-level AD progression

Wijeratne & Alexander, NeurlPS 2024, doi: arXiv:2410.14388
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Pixel-level progression Alzheimer’s disease (AD)

US

UNIVERSITY
OF SUSSEX

1.0{ — Brain-Stem

—— Cerebral-White-Matter
—— Cerebral-Cortex

—— Lateral-Ventricle
—— Thalamus-Proper
—— Putamen

0.8

0.0

0 200 400 600 800 1000 1200
Event

New insights into tissue-level AD progression

Wijeratne & Alexander, NeurlPS 2024, doi: arXiv:2410.14388
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Mechanistic modelling of disease propagation

concentration ¢ [-]
[ e— - —

gray and white matter atrophy

(!}

Figure |: Top Image: MRI scans of an Alzheimer's patient showing yearly progression, highlighting increased hippocampal atrophy, enlarged ventricles, and
widening cortical sulci. Middle Image: Annual increase in toxic protein concentration, starting from the brain stem. Bottom Image: Simulated annual atrophy
patterns, correlating activation time and toxic protein concentration. VWeickenmeier, |., Kuhl, E.. & Goriely, A. (2018). Multiphysics of prionlike diseases:
Progression and atrophy. Physical review letters , 121 (15), 158101. (https://creativecommons.org/licenses/by/4.0/)

Courtesy of Sanduni Pinnawala
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Mechanistic modelling of disease propagation llg
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BrainPhys
SNR=5
t-G 112 £=24 S Parameter
. L] L] 60! ——— L3 4
Challenges in studying mechanisms of nnn = e
neurodegeneration Bonld Bl Do |
=  Incomplete knowledge of disease biology e nnn ]
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207 et : i Al
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Count
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=> Demand large datasets - |
Physics informed machine learning combines e e R
data-driven methods with physical constraints to improve ® ©
interpretability

Courtesy of Sanduni Pinnawala
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Mechanistic modelling of disease propagation

Courtesy of Sanduni Pinnawala

| ODE Solve (Xy, f, 2, 2y 2 to, - - tr) |

Latent Space

LogNormal
(ﬂsz) ’ OZ:‘:;)

sample Z;U

& LogNormal
(l’[’ Zy? Ozi ) l E

: LogNormal

(7,02,) f i
= sample]| < :

Lrotal = Eg,z)x)[log pe(X|Z)] — Dxr(g4(Z|X) || p(Z)) + Lreg

ODE

Solver
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Mechanistic modelling of disease propagation

BrainPhys

de

e __ 2
5 — 2xV°c

True t6.0
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True t24.0

Predicted t24.0

Residual t6.0

Residual t24.0

Courtesy of Sanduni Pinnawala
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% = DVZc

where:

- % is the time derivative of ¢, describing the accumulation and propagation of misfolded protein concentration.

- DV ¢ represents diffusion
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Mechanistic modelling of disease propagation

BrainPhys
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% = DV2%c+re(l —¢)

where:

D

& =2zxVic+ zgf(c)

- Sf—‘ is the time derivative of ¢, describing the accumulation and propagation of misfolded protein concentration.
- DV2¢ represents diffusion
-re(1 — ¢) represents the reaction dynamics

True
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a S Bl
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04
I —
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’ 500
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i 400
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“ C 300
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Courtesy of Sanduni Pinnawala
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% — DV +re(l —c)

BrainPhys

where:

- % is the time derivative of ¢, describing the accumulation and propagation of misfolded protein concentration.

Jc 2
_— ZXV C - DV?¢ represents diffusion

at -re(1 — ¢) represents the reaction dynamics
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Detecting model mis-specification

BrainPhys

% = z2xV2c+ zpf(c)
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% = DVZc
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UNIVERSITY

OF SUSSEX

where:

- DV?¢ represents diffusion

- %‘ is the time derivative of ¢, describing the accumulation and propagation of misfolded protein concentration.

Intensity
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Summary and next steps Nivemery

OF SUSSEX

* Probabilistic models can be used to learn hidden information in
diseases

* Optimal transport formulation offers many benefits over standard
maximum likelihood approaches

* Physics-guided/integrated/informed... machine learning gives
flexibility

* But... identifiability, validation (ground truth?), assumptions, ...

Many interesting theoretical avenues...
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Summary and next steps Nivemery

OF SUSSEX

* Probabilistic models can be used to learn hidden information in
diseases

* Optimal transport formulation offers many benefits over standard
maximum likelihood approaches

* Physics-guided/integrated/informed... machine learning gives
flexibility

* But... identifiability, validation (ground truth?), assumptions, ...

Many interesting theoretical avenues...

Just need to pick the optimal route! Cgé)




Backup: uncertainty
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