Learning transition times in event sequences:
the Event-Based Hidden Markov Model

Connecting ideas from event-based and
hidden Markov modelling to derive a new
Interpretable model of disease progression

Progressive diseases such as Alzheimer’s disease (AD) are characterised
by monotonic deterioration in functional, cognitive and physical abilities over
a period of years to decades. Data-driven models of disease progression
can be used to learn hidden information, such as individual-level stage,
from observed data. Here we address the problem of how to learn transition
times in event sequences of disease progression, by introducing a new
generative Event-Based Hidden Markov Model (EB-HMM) of disease
progression. The main novelties of our work are as follows.

* We generalise a formerly cross-sectional model (the EBM: event-based
model Fonteijn et al. 2012), allowing it to account for longitudinal data.

* We define a Bayesian ‘event-based’ framework to inject prior information
Into structured inference from longitudinal data.

* We use our model to learn a new clinically interpretable sequence and
timing of events in AD and to predict individual-level trajectories.

Methods

The Event-Based Hidden Markov Model

To formulate EB-HMM, we make three assumptions, namely i) monotonic
feature changes; ii) a consistent event sequence, S, across the whole
sample; and iii) Markov (memoryless) stage transitions.
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Results

Inferring the timeline of feature changes in Alzheimer’s disease

We use data from the ADNI study, a longitudinal multi-centre observational
study of AD. We select 468 participants (119 CN: cognitively normal; 297
MCI: mild cognitive impairment; 29 AD: manifest AD; 23 NA: not available),
and three time-points per participant (baseline and follow-ups at 12 and 24
months). Individuals were allowed to have missing data at any time-point.
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Figure 1: EB-HMM parameters inferred from ADNI. (a) Gaussian mixture
model fits to distributions of CN and manifest AD groups. (b) Initial
probability density, 1, inferred by EB-HMM. (c) Event-based transition
matrix, Q, inferred by EB-HMM. Events are ordered by the maximum
likelihood sequence, S.
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Here 6° = [p* ,0” w"] and 6°=[u",0° ,w"] are the mean, y, standard deviation,

o, and mixture weights, w, for the patient and control mixture model
distributions, which define the event-based model. For a full derivation see
Wijeratne & Alexander, 2020.

time between events is calculated from Q. Baseline stage (solid arrow)
and predicted next stage (shaded arrow) estimated by EB-HMM for two
example patients are shown, chosen from the MCI and AD sub-groups.
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Model AU-ROC
EB-HMM (full) 0.804 £+ 0.07
EB-HMM (subset) | 0.737 £ 0.09
CT-HMM (subset) | 0.579 +0.12

Table 1: EB-HMM improves predictive utility over a standard
continuous time hidden Markov model (CT-HMM).

Performance for the task of predicting conversion, using either the full
data (including individuals with missing data) or subset data (only
iIndividuals with complete data).

% missing | AU-ROC

25% 0.722 4+ 0.09
50% 0.719 = 0.13
75% 0.669 4= 0.15

Table 2: EB-HMM maintains performance with missing data.
Performance for the task of predicting conversion with % missing data.

Discussion

A new interpretable model of disease progression

A key corollary benefit of EB-HMM'’s formulation is that it can infer
probabilistic estimates of group- and individual-level progression from
datasets with missing data, both in terms of observed features and time-
points. This gives EB-HMM high utility in clinical applications where
resources are scarce and/or it is too expensive to observe a patient multiple
times, making EB-HMM an ideal tool for advancing on the objective of
accessible healthcare. Future work with EB-HMM will be focused on
relaxing its assumptions, in particular allowing for non-monotonic
trajectories and multiple event sequences (subtypes).
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