
Learning transition times in event sequences: 
the Event-Based Hidden Markov Model

Connecting ideas from event-based and 
hidden Markov modelling to derive a new 
interpretable model of disease progression

Progressive diseases such as Alzheimer’s disease (AD) are characterised  

by monotonic deterioration in functional, cognitive and physical abilities over 

a period of years to decades. Data-driven models of disease progression 

can be used to learn hidden information, such as individual-level stage, 

from observed data. Here we address the problem of how to learn transition 

times in event sequences of disease  progression, by introducing a new 

generative Event-Based Hidden Markov Model (EB-HMM) of disease 

progression. The main novelties of our work are as follows.

Figure 1: EB-HMM parameters inferred from ADNI. (a) Gaussian  mixture 

model fits to distributions of CN and manifest AD groups. (b) Initial 

probability density, π, inferred by EB-HMM. (c) Event-based transition 

matrix, Q, inferred by EB-HMM. Events are ordered by the maximum 

likelihood sequence, S.

• We generalise a formerly cross-sectional model (the EBM: event-based 

model Fonteijn et al. 2012), allowing it to account for longitudinal data.
• We define a Bayesian ‘event-based’ framework to inject prior information 

into structured inference from longitudinal data.
• We use our model to learn a new clinically interpretable sequence and 

timing of events in AD and to predict individual-level trajectories.

Results
Inferring the timeline of feature changes in Alzheimer’s disease

Methods
The Event-Based Hidden Markov Model

To  formulate  EB-HMM, we make three assumptions, namely i) monotonic 

feature changes; ii) a consistent event sequence, S, across  the whole 

sample; and iii) Markov (memoryless) stage transitions.
Discussion
A new interpretable model of disease progression

A key corollary benefit of EB-HMM’s formulation is that it can infer 

probabilistic estimates of group- and individual-level progression from 

datasets with missing data, both in terms of observed features and time-

points. This gives EB-HMM high utility in clinical applications where 

resources are scarce and/or it is too expensive to observe a patient multiple 

times, making EB-HMM an ideal tool for advancing on the objective of 

accessible healthcare. Future work with EB-HMM will be focused on 

relaxing  its assumptions, in particular allowing for non-monotonic 

trajectories and multiple event sequences (subtypes).
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Figure 2: AD timeline inferred by EB-HMM. The order of events on the 

horizontal axis is given by the maximum likelihood sequence S, and the  

time between events is calculated from Q.  Baseline stage (solid  arrow)  

and predicted next stage (shaded arrow) estimated by EB-HMM for two 

example patients are shown, chosen from the MCI and AD sub-groups.

Assuming independence between observed features i=1,...,I, if a patient 

j=1,...,J is at latent state k
j,t
= 0,...,N at time t=1,...,T

j
 in the progression  

model, the likelihood of their data Y
j,t
 is given by:
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σ, and mixture weights, w, for the patient and control mixture model 

distributions, which define the event-based model. For a full derivation see 

Wijeratne & Alexander, 2020.

We use data from the ADNI study, a longitudinal multi-centre observational 
study of AD. We select 468 participants (119 CN: cognitively normal; 297 
MCI: mild cognitive impairment; 29 AD: manifest AD; 23 NA: not available), 
and three time-points per participant (baseline and follow-ups at 12 and 24 
months). Individuals were allowed to have missing data at any time-point.

Table 2: EB-HMM maintains performance with missing data. 

Performance for the task of predicting conversion with % missing data.

Table 1: EB-HMM improves predictive utility over a standard 
continuous time hidden Markov model (CT-HMM). 
Performance for the task of predicting conversion, using either the full 
data (including individuals with missing data) or subset data (only 
individuals with complete data).
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