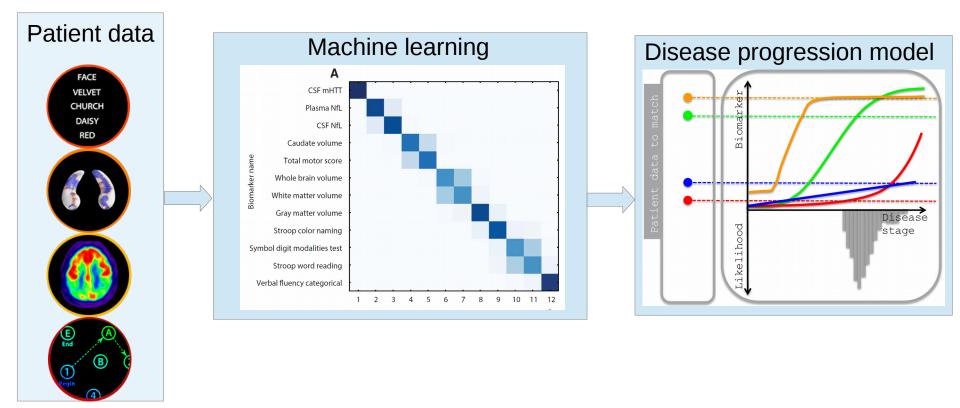


Data driven models of disease progression

Peter Wijeratne MRC Senior Research Fellow UCL Centre for Medical Image Computing





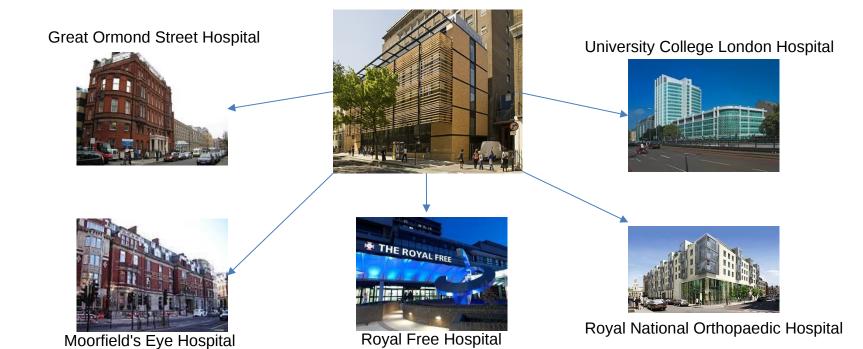
And all the participants of the Huntington's disease studies used here.

Centre for Medical Image Computing (CMIC)

Maths, physics and engineering scientists at the interface of basic and biomedical sciences

1

CMIC



POND: bridging the gap

Basic sciences

cmic

Centre for Medical Image Computing

Cluster

HR

computing

CNN

Clinical sciences

Leonard Wolfson Experimental Neurology Ce	entre
--	-------

Advanced imaging

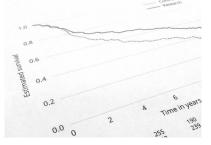
Clinical trials

ond

Progression Of Neurodegenerative Disease

Imaging + machine learning

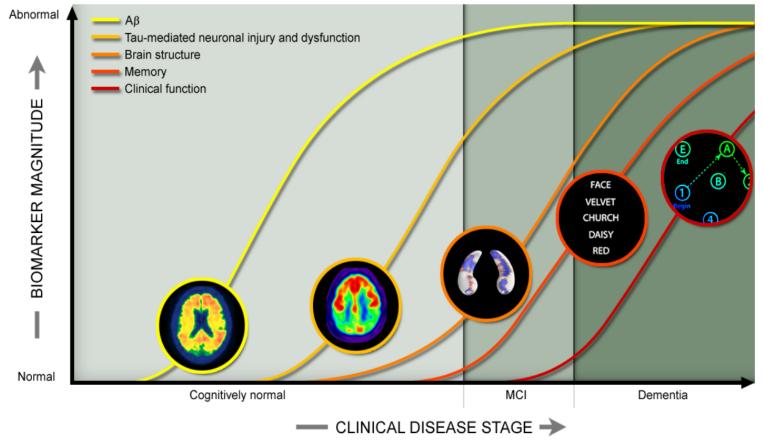
Statistical methods



Longitudinal Clustering Continuous Trajectories

Mechanistic (Network)

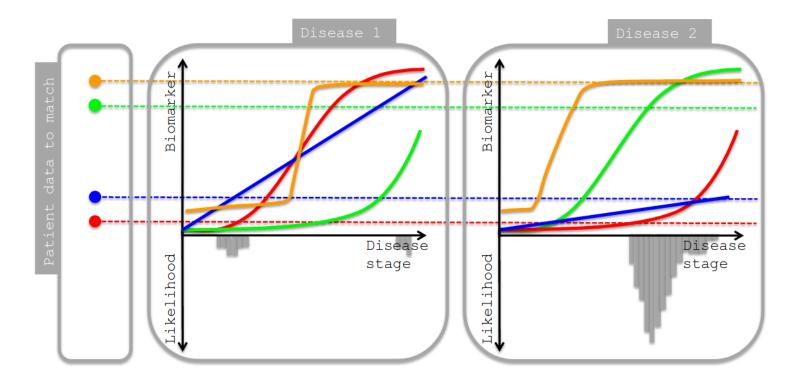
Clinical Translation Discrete Trajectories (Event-Based Model) E-Health Records



http://adni.loni.usc.edu/study-design/#background-container

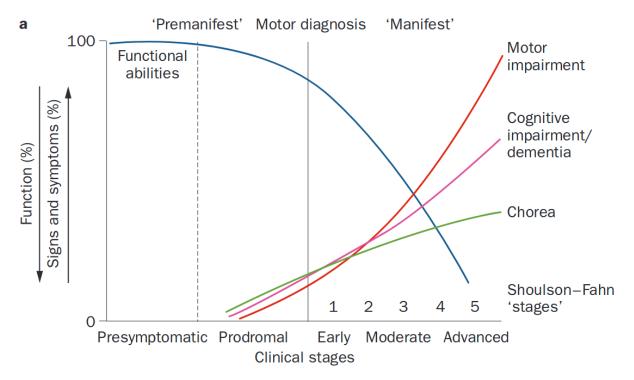
A picture of how components of a disease progresses over time

Disease progression models learn patterns of disease-related changes from data



- Can use models to infer temporal ordering of changes
- Can also stage and stratify patients \rightarrow clinical trial design

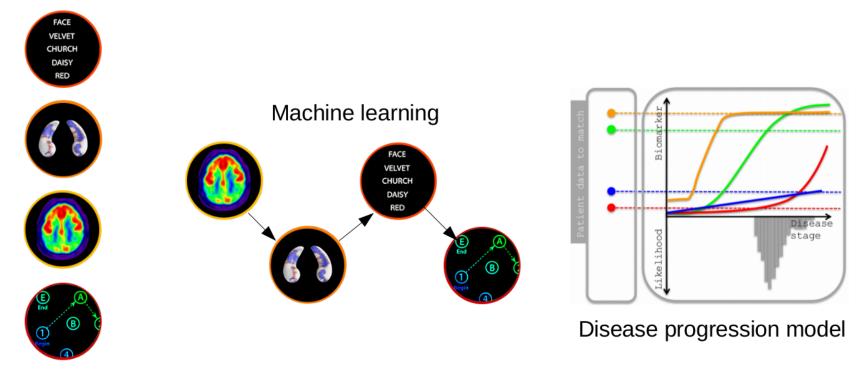
Can we estimate where a patient is along their disease path?



Patient stage is a latent variable – it generates the observed measurements, but is not measured directly (unlike in physics events, where we know time)

 \rightarrow Infer using statistical and machine learning methods

Disease progression models learn patterns of disease-related changes from data

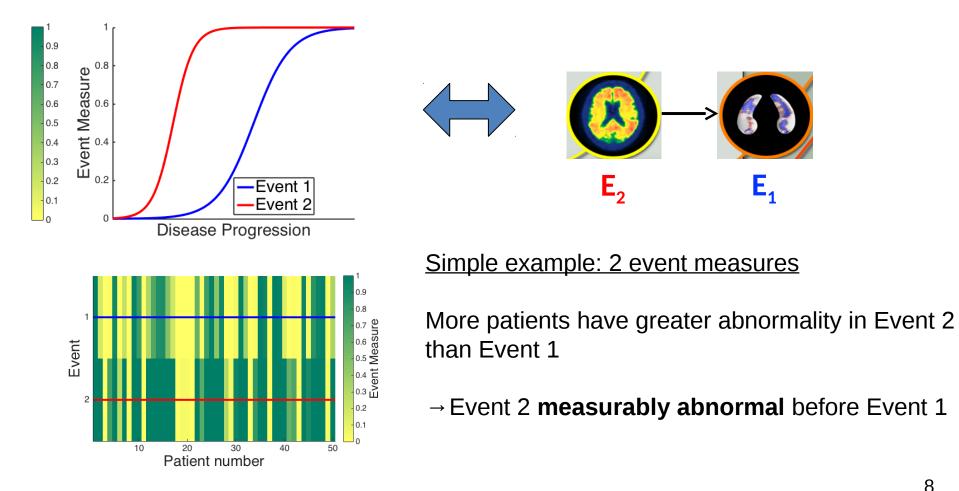


Patient data

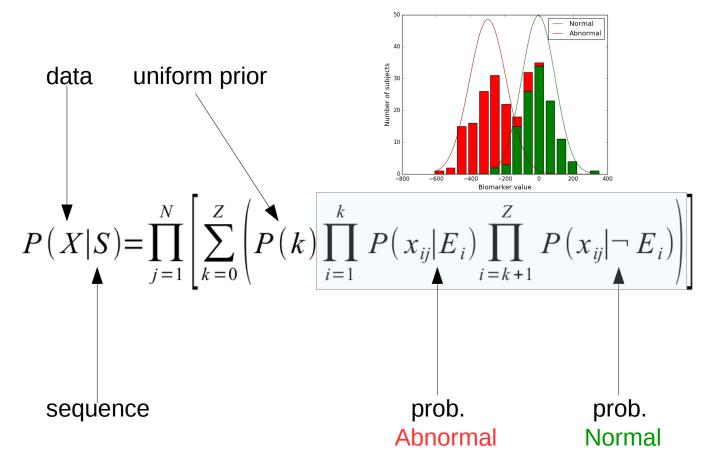
- Can use models to infer temporal ordering of changes
- Can also stage and stratify patients \rightarrow clinical trial design

EBM estimates ordering of **binary events** from data – normal or abnormal

Data can be cross-sectional and any combination of types (imaging, clinical, genetic...)

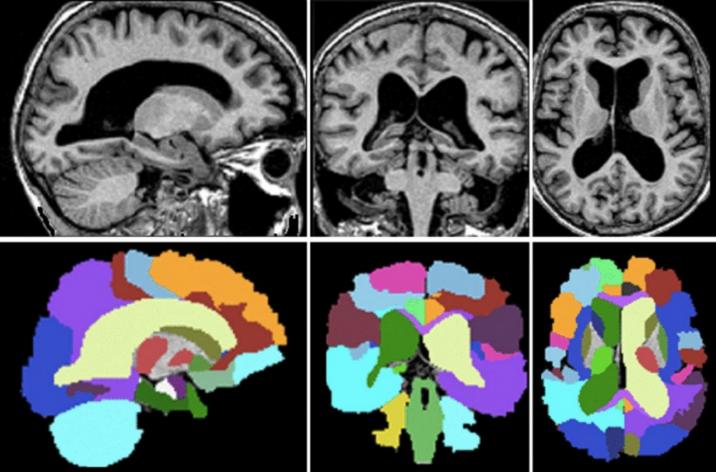


More formally: EBM is a generative model of observed data from unknown sequence



- The EBM needs likelihood distributions for normal and abnormal subjects
- \rightarrow Learn directly from data

Example: imaging data



Extract regional brain volumes using Geodesic Information Flows*

\rightarrow Reduces inter-subject variability by using spatially variant graphs to connect morphologically similar subjects

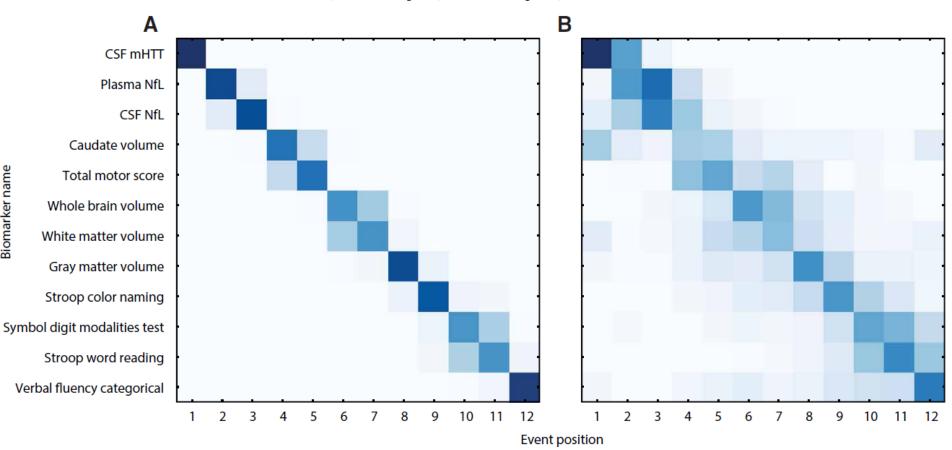
* MJ Cardoso et al. Geodesic Information Flows: Spatially-Variant Graphs and Their Application to Segmentation and Fusion. IEEE Transactions on Medical Imaging, 34 (2015), pp. 1976-1988, doi: 10.1109/TMI.2015.2418298

SCIENCE TRANSLATIONAL MEDICINE | RESEARCH ARTICLE

HUNTINGTON'S DISEASE

Evaluation of mutant huntingtin and neurofilament proteins as potential markers in Huntington's disease

Lauren M. Byrne^{1*†}, Filipe B. Rodrigues^{1†}, Eileanor B. Johnson¹, Peter A. Wijeratne², Enrico De Vita^{3,4}, Daniel C. Alexander^{2,5}, Giuseppe Palermo⁶, Christian Czech⁶, Scott Schobel⁶, Rachael I. Scahill¹, Amanda Heslegrave⁷, Henrik Zetterberg^{7,8,9,10}, Edward J. Wild¹*

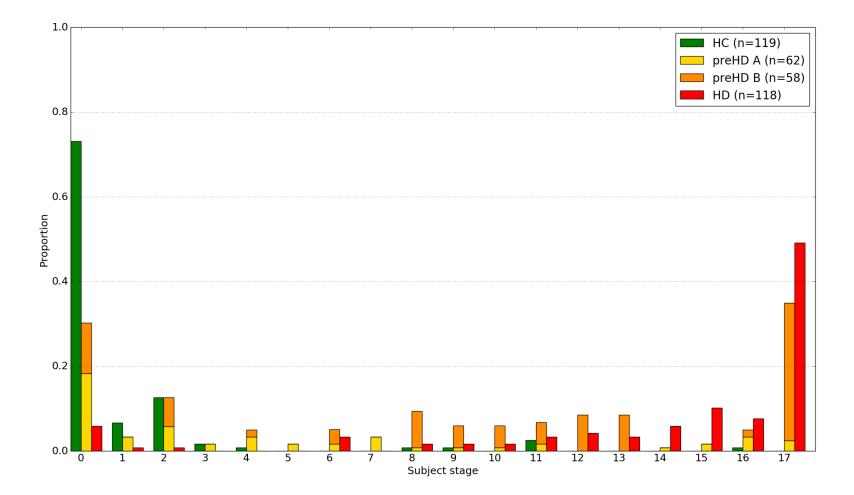


Finds that biofluid markers change before imaging and clinical markers

Staging patients

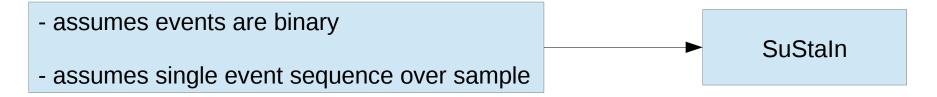
Simplest way is to take the stage that maximises the likelihood for each patient

$$argmax_k P(X_j | \overline{S}, k) = argmax_k P(k) \prod_{i=1}^k P(x_{ij} | E_i) \prod_{i=k+1}^l P(x_{ij} | \neg E_i)$$

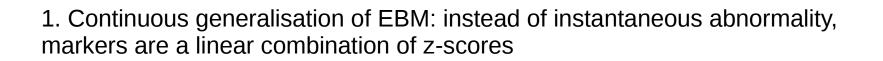


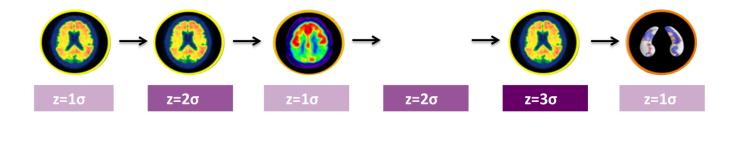
EBM +/-

- + estimate sequence from data, instead of a priori
- + no a priori biomarker thresholds learned from data
- + Bayesian \rightarrow characterise uncertainty
- + naturally extends to any type of dynamic biomarker
- + only needs cross-sectional data



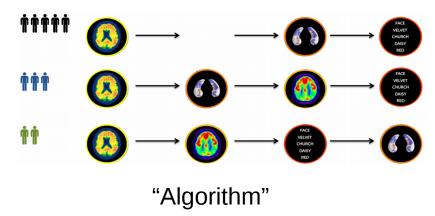
- assumes measurements are independent
- assumes no covariance between event measures
- requires a prior labelling

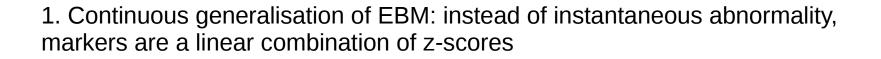




"Z-score model"

2. Total model is mixture of linear z-score models: grouped into clusters with distinct progression patterns





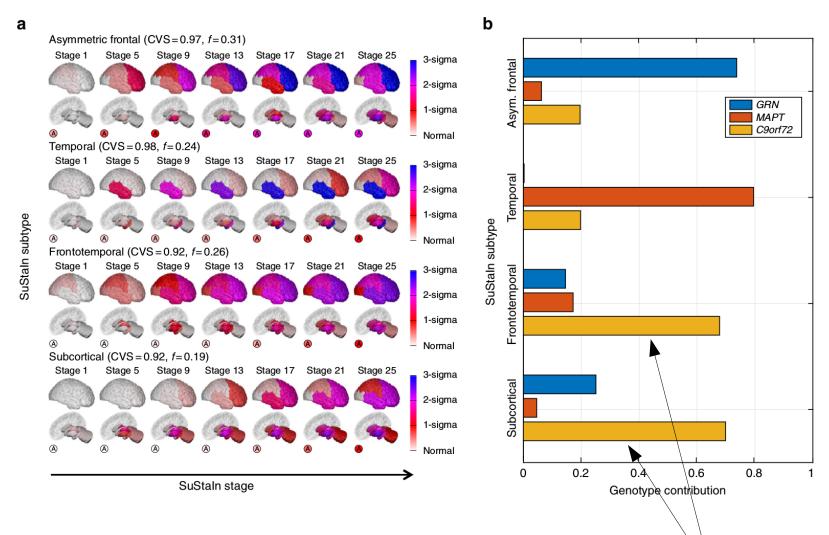
$$P(\mathbf{X}|\mathbf{S}) = \prod_{j=1}^{J} \left[\sum_{k=0}^{N} \left(\int_{t=\frac{k}{N+1}}^{t=\frac{k+1}{N+1}} \left(P(t) \prod_{i=1}^{I} P\left(x_{ij}|t\right) \right) \partial t \right) \right]$$

"Z-score model"

2. Total model is mixture of linear z-score models: grouped into clusters with distinct progression patterns

$$P(\mathbf{X}|\mathbf{M}) = \sum_{c=1}^{C} f_{c} P(\mathbf{X}|\mathbf{S}_{c})$$

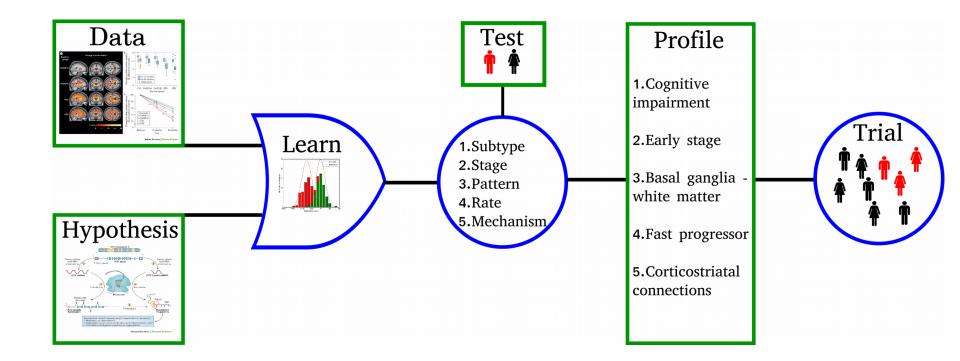
Results: SuStaln in GENFI



- SuStaIn find 4 distinct subtypes
- Subtypes show genetic dependency: within-geneotype phenotypes
- Maintained in CV (>93% similarity)

Ê

Patient data + machine learning = personalised profiles for clinical trial design



Model can be used for both prospective and retrospective analysis

- \rightarrow Save money and time
- → Optimise trial design

• Event-based model (EBM) can be used to uncover a sequence of events across a population

• Subtype and stage inference (SuStaIn) can be used to uncover multiple sequences of events across a population

• Provides clinically meaningful prognostic information –

- Most likely disease stage
- Most likely next stage
- Underlying sequence of changes
- Data-driven subtypes

• Can easily extend model to include any types of dynamic marker – different imaging modalities (e.g. DWI, PET), biofluids

"Machine learning and computational modelling in the clinic"

How can EBM and SuStaIn be applied to data at Juntendo Hospital?

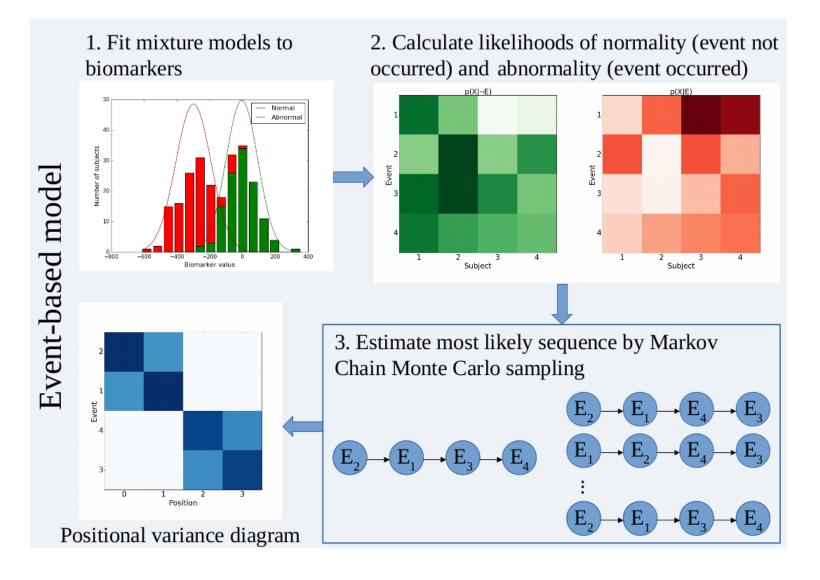
- 1. Subtypes in Parkinson's
- 2. Subtypes in epilepsy
- 3. Subtypes in natural ageing

The system could eventually be used to

1. Provide fine-grained stratification for clinical trials

2. Aid in treatment planning in a clinical setting

Question – what data would you like to model?

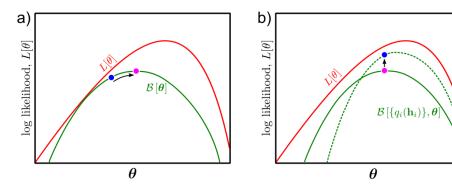


Back-up: EBM parameter estimation

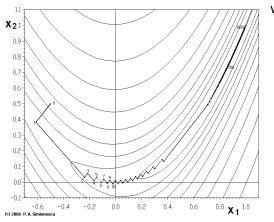
Prince, SJD. Cambridge University Press. 2012

Î

- 1. Mixture model fitting
- Expectation Maximisation



2. Latent variable (sequence) fitting– Gradient Ascent



η wikipedia.org/wiki/gradient_descent

 $a = p(X \mid S')/p(X \mid S_t)$

3. Uncertainty estimationMarkov Chain Monte Carlo

