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Background: Huntington’s disease
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● Neurodegenerative disease that causes progressive deterioration and death ~ 55 years old
 

● Caused by an expansion in the number of cytosine-adenine-guanine (CAG) repeats in the 
huntingtin gene

● Characterised by a long (~10 years) pre-manifest period before clinical symptoms develop

● Clinical progression is mirrored by monotonic change in regional brain volumes

Ross et al. Nature Reviews 2014
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Methods: Disease progression modelling
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● Problem – patients are observed at unknown disease time which doesn’t necessarily correspond 
to observation time; this confounds time-series regression

● Solution – learn both temporal covariance (regression) and latent disease stage (time-shift) 
using a generative, time-reparameterised Gaussian Process Progression Model (GPPM)*
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Objectives

1. Infer biomarker dynamics from longitudinal individual-level data

2. Estimate where a patient is along the disease trajectory
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Methods: Gaussian Process Progression Model
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● We define a cost function: sum of model likelihood + regularisation term 

● Monotonicity constraint* – enforced by constraining first derivative of fixed-effects

● Sequentially fit regression parameters and individual time shift

Iteration 1 Iteration N

T
im

e 
sh

if
t

  
  

  
 R

eg
re

ss
io

n

* Lorenzi & Filippone. 2018. arXiv:1802.05680      p.wijeratne@ucl.ac.uk        @WijDr



Methods: Datasets
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● TRACK-HD and PREDICT-HD are longitudinal multi-centre cohort studies of Huntington’s disease

● T1-weighted 3T sMRI scans from 3 time-points were longitudinally registered using SPM12

● Regional volumes were segmented and parcelleted using the GIF segmentation tool*

● Regional volumes were adjusted for covariates (age, sex, site, total intracranial volume)

● CAG data used for evaluation, not training

* MJ Cardoso et al. IEEE TMI. 2015; 34:1976-88

Demographic 
Characteristic

HC 
(TRACK-HD)

PreHD 
(TRACK-HD)

HD 
(TRACK-HD)

HC 
(PREDICT-HD)

PreHD 
(PREDICT-HD)

N 100 104 80 36 128

Sex (F:M) 58:42 55:49 43:37 25:11 82:46

Age 
(mean ± std)

46.3 ± 10.4 41.2 ± 8.8 48.5 ± 9.3 45.1 ± 10.9 41.5 ± 10.9

CAG 
(mean ± std)

- 43 ± 2.3 43.8 ± 3 - 42.5 ± 2.7
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Results: Trajectories

● Predicted volumetric changes in 6 key anatomical regions

● Mostly sigmoidal, but pronounced non-linearity in lateral ventricles

● Absolute magnitude ranging from 7-22% over ~11 years
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Results: Trajectories (group-level)

● Predicted volumetric changes in 10 key sub-cortical and cortical regions

● Larger and mostly non-linear change in sub-cortex (except thalamus)

● Smaller and mostly linear change in cortex (except sensory motor)
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Results: Change point ordering

● Time at maximum gradient 
→ time at transition from pre-
manifest to manifest HD

● Estimate maximum change 
time from 1000 samples from 
posterior for each region

● Model predicts earliest 
changes in basal ganglia 
(pallidum, putamen, caudate)

● Also predicted by 
completely separate 
methodology using cross-
sectional data*

● Followed by changes across 
the cortex over period of ~2 
years
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Results: Prediction of onset

● Compare accuracy of predicted time-to-onset with benchmark survival model (SM) based on 
age and CAG*

● GPPM provides a smaller uncertainty and tracks disease progression better than the SM

8* Langbehn et al. Am J Med Neuropsychiatr Genet. 2011; 153:397-408      p.wijeratne@ucl.ac.uk        @WijDr
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Conclusions
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● The Gaussian Process Progression Model (GPPM) can be used to infer 
longitudinal changes in regional imaging volumes

● Provides clinically meaningful information: 

● Biomarker temporal progression (group-level)
● Staging (individual-level)
● Biomarker temporal ordering

● GPPM predictions also outperforms the benchmark survival model in HD

→Disease progression modelling can improve sMRI as a biomarker

● Can easily used to model to include any types of dynamic marker – 
different imaging modalities (e.g. DWI, PET), biofluids, clinical markers…

● Online GPPM interface available here: https://epione-demo.inria.fr/ 

      p.wijeratne@ucl.ac.uk        @WijDr

Thanks for listening – get in touch!

mailto:p.wijeratne@ucl.ac.uk


Acknowledgements

And all the participants of the Huntington’s disease studies used here. 

      p.wijeratne@ucl.ac.uk        @WijDr


	Slide 1
	Slide 2
	Slide 4
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 13
	Slide 14
	Slide 15

