p.wijeratne@ucl.ac.uk 🔰 @WijDr

Gaussian Process Progression Modelling of structural MRI changes in Huntington's disease

Peter A. Wijeratne^{1,2}, Sara Garbarino³, Eileanoir B. Johnson², Sarah Gregory², Rachael I. Scahill², Sarah J. Tabrizi², Marco Lorenzi⁴, Daniel C. Alexander¹

ISMRM & SMRT Virtual Conference & Exhibition Session Title: AI Applications in Neuroimaging: High Novelty & Impact 08-14 August 2020

¹Centre for Medical Image Computing, Department of Computer Science, University College London, United Kingdom ²Huntington's Disease Research Centre, Queen Square Institute of Neurology, University College London, United Kingdom ³Dipartimento di Matematica, Università di Genova, Italy

⁴Inria, Epione Research Project, Université Côte d'Azur, France

ONE COMMUNITY

ISMRM & SMRT Virtual Conference & Exhibition 08-14 August 2020

Declaration of Financial Interests or Relationships

Speaker Name: Peter A. Wijeratne

I have no financial interests or relationships to disclose with regard to the subject matter of this presentation.

Background: Huntington's disease

- Neurodegenerative disease that causes progressive deterioration and death ~ 55 years old
- Caused by an expansion in the number of cytosine-adenine-guanine (CAG) repeats in the huntingtin gene
- Characterised by a long (~10 years) pre-manifest period before clinical symptoms develop
- Clinical progression is mirrored by monotonic change in regional brain volumes

Objectives

1. Infer biomarker dynamics from longitudinal individual-level data

2. Estimate where a patient is along the disease trajectory

• **Problem** – patients are observed at unknown disease time which doesn't necessarily correspond to observation time; this confounds time-series regression

• **Solution** – learn both temporal covariance (regression) and latent disease stage (time-shift) using a generative, time-reparameterised Gaussian Process Progression Model (GPPM)*

2

Methods: Gaussian Process Progression Model

- We define a cost function: sum of model likelihood + regularisation term
- Monotonicity constraint* enforced by constraining first derivative of fixed-effects
- Sequentially fit regression parameters and individual time shift
- 💟 p.wijeratne@ucl.ac.uk 🔰 @WijDr

Methods: Datasets

Demographic Characteristic	HC (TRACK-HD)	PreHD (TRACK-HD)	HD (TRACK-HD)	HC (PREDICT-HD)	PreHD (PREDICT-HD)
Ν	100	104	80	36	128
Sex (F:M)	58:42	55:49	43:37	25:11	82:46
Age (mean ± std)	46.3 ± 10.4	41.2 ± 8.8	48.5 ± 9.3	45.1 ± 10.9	41.5 ± 10.9
CAG (mean ± std)	-	43 ± 2.3	43.8 ± 3	-	42.5 ± 2.7

- TRACK-HD and PREDICT-HD are longitudinal multi-centre cohort studies of Huntington's disease
- T1-weighted 3T sMRI scans from 3 time-points were longitudinally registered using SPM12
- Regional volumes were segmented and parcelleted using the GIF segmentation tool*
- Regional volumes were adjusted for covariates (age, sex, site, total intracranial volume)
- CAG data used for evaluation, not training

Results: Trajectories

• Predicted volumetric changes in 6 key anatomical regions

- Mostly sigmoidal, but pronounced non-linearity in lateral ventricles
- Absolute magnitude ranging from 7-22% over ~11 years

💟 p.wijeratne@ucl.ac.uk 🔰 @WijDr

Results: Trajectories (group-level)

- Predicted volumetric changes in 10 key sub-cortical and cortical regions
- Larger and mostly non-linear change in sub-cortex (except thalamus)
- Smaller and mostly linear change in cortex (except sensory motor)

💟 p.wijeratne@ucl.ac.uk 🔰 @WijDr

Results: Change point ordering

 Time at maximum gradient
→ time at transition from premanifest to manifest HD

Î

• Estimate maximum change time from 1000 samples from posterior for each region

• Model predicts earliest changes in basal ganglia (pallidum, putamen, caudate)

• Also predicted by completely separate methodology using crosssectional data*

• Followed by changes across the cortex over period of ~2 years

Results: Prediction of onset

PREDICT-HD

PREDICT-HD

- Compare accuracy of predicted time-to-onset with benchmark survival model (SM) based on age and CAG*
- GPPM provides a smaller uncertainty and tracks disease progression better than the SM

- The Gaussian Process Progression Model (GPPM) can be used to infer longitudinal changes in regional imaging volumes
- Provides clinically meaningful information:
 - Biomarker temporal progression (group-level)
 - Staging (individual-level)
 - Biomarker temporal ordering
- GPPM predictions also outperforms the benchmark survival model in HD
 - \rightarrow Disease progression modelling can improve sMRI as a biomarker
- Can easily used to model to include any types of dynamic marker different imaging modalities (e.g. DWI, PET), biofluids, clinical markers...
- Online GPPM interface available here: https://epione-demo.inria.fr/

Thanks for listening – get in touch!

Acknowledgements

ond

HUNTINGTON'S DISEASE CENTRE

And all the participants of the Huntington's disease studies used here.

