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Background: my former life as a particle physicist

(a) A Higgs-like boson (b) CERN sheep outside ATLAS



PhD: unfolding / inverse problems
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PhD - postdoc dh

| saw this one day in 2013

| wanted to use physics to fight cancer
| asked about for potential opportunities

| got lucky and a postdoc came up at the Centre for Medical Image Computing



Centre for Medical Image Computing (CMIC)

Maths, physics and engineering scientists at the interface of basic and biomedical sciences
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CMIC capability-application

Imaging
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Slight (3 year) diversion: biophysical modelling of drug delivery &

The Chemical Basis of Morphogenesis

A. M. Turing

Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, Vol.

237, No. 641. (Aug. 14, 1952), pp. 37-72.

Computational Modeling
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Ficure 2. An example of a ‘dappled’ pattern as resulting from a type (a) morphogen system.
A marker of unit length is shown. See text, §9, 1.




Slight (3 year) diversion: biophysical modelling of drug delivery &
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Current work: computational neurology
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Huntington’s disease dh

Ross et al. Nature Reviews 2014
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Progressive, hereditary brain disease that causes changes in movement,
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Autosomal dominant — 50% of inheriting

Fully penetrant — everyone with gene will develop HD i



Huntington’s disease dh

Bates et al. Nature Reviews
Disease Primer. 2015
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Huntington’s disease dh

b Motor diagnosis Ross et al. Nature Reviews 2014
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Brain changes in HD — specific regions of the brain are atrophied

12



Huntington’s disease o

Bates et al. Nature Reviews Disease Primer. 2015

Control Prodromal Huntington disease
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ventricle

Putamen

MRI provides spatial intensity measurements that depend
on tissue properties

Observed changes reflected by microscopy (histology)




The problem

Can we estimate where a patient is along their disease path?
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Patient stage is a latent variable — it generates the observed measurements,
but is not measured directly (unlike in physics events, where we know time)

— Infer using statistical and machine learning methods
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Bridging the gap h
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Some quick definitions dh

Biomarker: any biological measurement that tracks disease progression
Event: transition of a biomarker from a normal to abnormal state (Markovian)
Sequence: order of events over sample of interest

Cross-sectional: data from a single time-point
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High level: Disease progression modelling o

http://adni.loni.usc.edu/study-design/#background-container
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High level: Disease progression modelling

Disease progression models learn patterns of disease-related changes from data

Machine learning -
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Disease progression model

Patient data

e Can use models to infer temporal ordering of changes

« Can also stage and stratify patients — clinical trial design
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Background: Event-based model (EBM)

EBM estimates ordering of binary events from data — normal or abnormal

Data can be cross-sectional and any combination of types (imaging, clinical, genetic...)
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Simple example: 2 event measures

Event

| Iijig More patients have greater abnormality in Event 2
1“§  than Event 1

) —0.33
— Event 2 measurably abnormal before Event 1

Patient number
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Background: Event-based model (EBM) h

More formally: EBM is a generative model of observed data from unknown sequence

data  uniform prior

seguence prob. prob.
Abnormal Normal

* The EBM needs likelihood distributions for normal and abnormal subjects

— Learn directly from data

20



Example: Event-based model (EBM)

1. Fit mixture models to 2. Calculate likelihoods of normality (event not
biomarkers occurred) and abnormality (event occurred)
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Chain Monte Carlo sampling

0666
0 0ee 666

i 3 *

Positional variance diagram @ @ @ @

Event-based model
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Toolkit: parameter estimation

1. Mixture model fitting
— Expectation Maximisation

2. Latent variable (sequence) fitting

— Gradient Ascent

3. Uncertainty estimation
— Markov Chain Monte Carlo

log likelihood, L[6]

Prince, SJD. Cambridge University
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Mapping the Huntington’s timeline

Unique access to the largest combined multi-modal dataset in Huntington’s disease
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Methods: Imaging data

Extract regional brain volumes using Geodesic Information Flows*

— Reduces inter-subject variability by using spatially variant graphs to connect
morphologically similar subjects

* MJ Cardoso et al. Geodesic Information Flows: Spatially-Variant Graphs and Their Application to Segmentation and Fusion. IEEE Transactions on Medical
Imaging, 34 (2015), pp. 1976-1988, doi: 10.1109/TMI.2015.2418298 24



EBM in HD

Direct model fit Bootstrapped model fit
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* Dark diagonal components indicate strong event ordering

* Lighter indicate possible event permutations
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Atrophy progression
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Backup: HD-CSF EBM

SCIENCE TRANSLATIONAL MEDICINE | RESEARCH ARTICLE

HUNTINGTON'S DISEASE

Evaluation of mutant huntingtin and neurofilament
proteins as potential markers in Huntington’s disease
Lauren M. Byrne'#!, Filipe B. Rodrigues'?, Eileanor B. Johnson', Peter A. Wijeratne?,

Enrico De Vita®*, Daniel C. Alexander?®, Giuseppe Palermo®, Christian Czech®, Scott Schobel®,
Rachael I. Scahill’, Amanda Heslegrave’, Henrik Zetterberg”®%1%, Edward J. Wild'*
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Staging patients h

Simplest way is to take the stage that maximises the likelihood for each patient
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Extending EBM-HD + cross-validation

49 48 47 46 43 42 41 40

(SWRT) 8
(SDMT) 7 A
Motor abnormality

(TMS) 6

(CSF) 51

(Insula WM) 4 -

EBM stage
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(Putamen) 1 -

Normal) 0 : : . : : : :
(Normal) 0.3 10 20 30 40 50 60 70 80
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—— EBM
--F- Langbehn 2004

* Estimate age at event e.g.
for CAG 40, WM atrophy at ~60 years old
for CAG 49, WM atrophy at ~25 years old

age of onset (years)

* Age of onset agrees well with gold standard

1 45 46 a7 48 49
CAG repeat size 2 9



Big vision: computational models for clinical trials

Patient data + machine learning = personalised profiles for clinical trial design

Test Profile

1.Cognitive
impairment

2.Early stage

1.Subtype
2.Stage
3.Pattern
4.Rate
5.Mechanis

3.Basal ganglia -
white matter

4.Fast progressor

5.Corticostriatal
connections

Model can be used for both prospective and retrospective analysis

- Save money and time
- Optimise trial design
30



Inria research visit dh

We’'ve looked at cross-sectional modelling, so the natural next step is...
Longitudinal modelling of Huntington’s disease biomarkers
* Use Gaussian Process Progression model with Huntington’s disease data
* Biomarker trajectories, relative ordering
* Explore potential methodological developments
* ‘Subtyping’ (i.e. clustering covariance)
* Other potential applications of GP-based models in HD
* GPs with mechanistic constraints, voxelwise data, VAES

* Suggestions very welcome!
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