Learning timelines of dementia progression using
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Our research: bridging computer and life sciences
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The big idea: ML in neuro-degeneration and development

Build ML algorithms that can leverage multi-modal data
to characterise and predict progression
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Build ML algorithms that can leverage multi-modal data
to characterise and predict progression
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The big idea: ML in neuro-degeneration and development

Build ML algorithms that can leverage multi-modal data
to characterise and predict progression
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Types of data

Here we focus on studies with neuroimaging data

But methods can be applied to other data types,
e.g., phenotypic, genetic, biofluid, ...
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Imaging and processing
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Extract regional brain volumes from structural MRI using automated segmentation tool + QC

Wijeratne & Johnson et al. Annals of Neurology. 2022
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Research theme 1: modelling neurodegenerative patterns

Use post-processed imaging data from a single time-point to learn ordering of
regional brain volume changes across a population

Regional brain volumes Order of regional brain atrophy in HD
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Research theme 1: modelling neurodegenerative patterns

Use imaging data from a single time-point to learn ordering of pixel / voxel-wise
changes across a population

Structural MR

Order of pixel-wise brain atrophy in AD

In preparation



Research theme 2: modelling neurodegenerative timelines IB
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Use multi-modal medical data (imaging, clinical, genetic, ...) from multiple time-points
to learn the ordering and timing of biomarker changes across a population
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Wijeratne et al. Imaging Neuroscience. 2023
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Research theme 2: modelling neurodegenerative timelines

Use multi-modal medical data (imaging, clinical, genetic, ...) from multiple time-points
to learn the ordering and timing of biomarker changes across a population
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Wijeratne et al. Imaging Neuroscience. 2023



Research theme 3: predicting individual progression

Use multi-modal medical data (imaging, clinical, genetic, ...) from single or multiple
time-points to predict progression
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Wijeratne et al. Imaging Neuroscience. 2023
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Summary and next steps

* ML is a useful tool that can leverage multi-modal data to both
characterise and predict disease progression

* Our models have yielded new insights into AD and HD aetiology

* Next — predicting future trajectories at the individual level
* Include individual covariates (genetics, risk factors...)
* Inform on treatment planning, enrich clinical trials

* Next — other applications
* Other progressive diseases (lung, eye, ...)

* Neurodevelopment
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