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The role of tumour–host mechano-biology and the mechanisms involved

in the delivery of anti-cancer drugs have been extensively studied using

in vitro and in vivo models. A complementary approach is offered

by in silico models, which can also potentially identify the main factors

affecting the transport of tumour-targeting molecules. Here, we present a

generalized three-dimensional in silico modelling framework of dynamic

solid tumour growth, angiogenesis and drug delivery. Crucially, the

model allows for drug properties—such as size and binding affinity—to

be explicitly defined, hence facilitating investigation into the interaction

between the changing tumour–host microenvironment and cytotoxic and

nanoparticle drugs. We use the model to qualitatively recapitulate exper-

imental evidence of delivery efficacy of cytotoxic and nanoparticle drugs

on matrix density (and hence porosity). Furthermore, we predict a highly

heterogeneous distribution of nanoparticles after delivery; that nano-

particles require a high porosity extracellular matrix to cause tumour

regression; and that post-injection transvascular fluid velocity depends on

matrix porosity, and implicitly on the size of the drug used to treat the

tumour. These results highlight the utility of predictive in silico model-

ling in better understanding the factors governing efficient cytotoxic and

nanoparticle drug delivery.
1. Introduction
The efficient delivery of drugs to solid tumours is determined by a complex

system of biophysical factors originating from tumour–host interactions

[1–4]. Specifically, growth-induced mechanical stresses exerted by the

tumour on the surrounding tissue cause changes in the structure and distri-

bution of the surrounding vasculature, increased interstitial fluid pressure

and compromised delivery efficacy [5–7]. These effects occur across multiple

length and time scales, with rapid diffusion of single molecule agents—such

as cytotoxic drugs—contrasting with convection-dominated transport of

larger macromolecules, such as proteoglycans in the extracellular matrix

(ECM), and nanoparticles, which have been extensively studied as a potential

delivery system for therapeutic drugs [8]. However, progress in developing

an effective nanoparticle-based therapy has been slow, largely due to the afore-

mentioned complexity of the tumour–host environment [9]. As such, there is an

increasing need for new methodologies that can be used to realistically model

tumour–host pathophysiology, and hence estimate the optimal biophysical and

material conditions for efficient delivery.

In silico modelling of drug delivery to tumours, whereby the tumour–host

system is modelled according to biophysical laws, has been used to predict

the effect of blood-borne drugs on pathological tissues. In this paper, we pro-

vide an overview of the most recent efforts in this field; for more extensive
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reviews, see [3,10]. Broadly speaking, in silico models can be

split into two categories: (i) static-tissue models, where the

tumour and vasculature are treated as a static object in situ
and drug delivery is modelled as a separate dynamic process;

and (ii) dynamic-tissue models, where both the tumour and

surrounding tissue dynamics are coupled with drug kine-

matics. A static-tissue model was employed by D’Esposito

et al. [11], where the authors found good agreement between

model predictions of blood flow and the spatial distribution

of drug uptake and data acquired from in vivo mouse

model images. Sefidgar et al. [12] compared models of static

and dynamic vascular networks and found that the dynamic

network predicted a more heterogeneous and irregular vas-

cular structure than the static network. More recently,

Vavourakis and colleagues [13] developed a dynamic-tissue

model of solid tumour growth and angiogenesis, which reca-

pitulated the distribution and structure of pathological

vascular networks from in vivo mouse model images. This

framework was then extended to include a model of cytotoxic

drug delivery [14], which predicted that chemotherapeutic

agents have the highest impact when delivered via highly

permeable, dense vascular networks.

Here, we generalize the modelling framework to account

for drugs of any size, and in particular nanoparticles. We

then use the model to make predictions of the effects of

both tumour–host and drug properties on delivery efficiency

and distribution. Crucially, our dynamic-tissue approach

allows us to model how the tumour–host environment

changes with time, and hence make predictions of the result-

ing vascular and tissue distributions post-therapy. This has

particular relevance to staged therapeutic approaches,

where drugs or combinations of different drugs are adminis-

tered at intervals in an attempt to maximize delivery

efficiency [15]. The article is structured as follows: first, the

methodology is reviewed; next, results are presented from

multiple simulations of drug delivery to a solid tumour

growing into a vascularized host tissue, and concurrently,

we discuss the implications of our predictions in the context

of optimal drug delivery.
2. Material and methods
The present in silico cancer modelling methodology is motiv-

ated by the tumour growth and angiogenesis model proposed

by the authors in [13]; hence, we have adopted here the same

notation convention for the presentation of the mathematical

models. The in silico cancer modelling framework consists of

three interconnected core compartments that encompass differ-

ent aspects of the mechano-biology of the cancerous and the

host tissue, with one sub-compartment and one super-compart-

ment that encapsulates all compartments. The core

compartments of the framework are the Solid mechanics, the

Fluid mechanics and the Biochemics compartments; whereas,

the single sub-compartment of the framework is the Drug deliv-
ery one, which impacts the behaviour of the Solid mechanics and

the Biochemics compartments.

Finally, the Microvasculature/Angiogenesis compartment is the

super-set of all three core compartments, since blood vessels’

structural integrity, perfusion state and ability to branch or/

and elongate are affected by both biomechanical and biochemical

factors. Figure 1 depicts via a flow chart of the aforementioned

compartments of the proposed in silico framework, which are

briefly presented in the following subsections.
2.1. Biochemical model compartment
The Biochemics model encompasses key biological factors associ-

ated with the development of a solid tumour and angiogenesis.

These include the transport of oxygen and nutrients in the

ECM, j, the transport of enzymes that degrade the ECM, m, the

balance of tumour-secreted angiogenic factors, t, and the density

of the ECM to connective (structural) tumour/host tissue, e. The

governing equations necessary to describe the first three state

variables are defined in detail in [13] (see eqns (12)–(14)

therein)—they are unaffected by the addition of the Drug delivery
sub-compartment presented in §2.3.2. However, the balance

equation of e that describes the dynamics of the ECM is directly

influenced by the drug agent, thus eqn (1) in [13] is modified to

reflect this:

_e ¼ lej e�e=�e � deme� ddc�a
i e, (2:1)

with the first term describing the rate at which ECM remodels,

where the dot denotes time derivative, �e is a scaling parameter

that modulates the ECM level at which natural remodelling of

the host-tissue matrix occurs and le an ECM-remodelling rate par-

ameter. The last two terms in the previous equation describe the

ECM degradation due to the presence of matrix-degrading

enzymes—secreted by the tumour and the tip-endothelial cells

of the tumour vasculature—and the effect of the drugs on the

tumour cells’ killing, with de and dd being the degradation rates,

respectively. Also, ci denotes the drug concentration that has inter-

nalized into the cancer cells of the tumour, as clarified in the

following subsection, while �a is a model parameter that controls

the cancerous tissue regression.

All continuity equations were discretized using linear finite

elements, where we adopted a hexahedral-dominant grid, with

zero flux set to all external boundaries for all variables. Numeri-

cal solution to the time-dependent equations has been carried out

using an explicit time integration scheme, where zero initial

values were set for state variables m and t while the distribution

of j and e was set uniform everywhere in the domain of analy-

sis—to reflect physiological conditions prior to vascularized

tumour growth.

2.2. Solid mechanics model compartment
The Solid mechanics compartment encompasses the biomechanics

of the tumour and the host tissue, modelled here in three dimen-

sions, and the biomechanics of the microvascular network. The

balance of mechanical forces is expressed through the linear

momentum equation—formulated in a Lagrangian framework,

where both inertia and body forces are considered negligible:

r � [F � S] ¼ 0, (2:2)

where S is the second Piola–Kirchhoff stress tensor. Following

the multiplicative decomposition of the deformation gradient

tensor into an elastic and an inelastic (growth) component

respectively, as in [16]: F ¼ Fe � Fg, where Fg ¼ (2qg þ 1)1=2I,

with I the identity tensor and qg the volumetric deformation rep-

resented by the product of a Gompertzian growth function

(expressed with respect to j) and a monomial function

(expressed with respect to e): qg ¼ ag{ exp [�bg exp [�ggj]]�
exp [�bg]}� edg , where ag, bg, gg, dg are dimensionless par-

ameters of the growth function. The constitutive equation of

the tissue biomechanics is given by the general form [17]

S ¼ @ �W=@Ee, where Ee is the elastic Green–Lagrange strain.

The present model assumes a hyperelastic soft tissue biomecha-

nics using the modified neo-Hookean stored energy function (see

eqn (6.21) in [18]). From that equation, the structural integrity of

the tissue is directly linked to the ECM-related state variable e

via G(e) ¼ me e
aw , where me represents the material shear mod-

ulus, aw (.0) is a constant parameter that modulates tissue

softening/stiffening with respect to the ECM density.
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Figure 1. Graphical representation of the in silico cancer simulator, showing the core compartments of the coupled modelling approach. The framework consists of
the solid mechanics compartment, the biochemics compartment and the fluid mechanics compartment, with the latter also encapsulating the drug delivery
modelling component. (Online version in colour.)
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The biomechanical interaction between the tumour–host bio-

mechanics and the capillaries of the microvascular network and

the corresponding biomechanical modelling of the capillary wall

remodelling is thoroughly explained in our previous work [13].

As in that work, here the balance equation for the solid mech-

anics of the tumour and the host tissue has been discretized

using finite elements. Numerical solution of the unknown displa-

cements has been accomplished via a Newton–Raphson iterative

scheme; this was necessitated by the presence of nonlinearities in

the tissue biomechanics and the large deformations induced by

the growing cancer mass.
2.3. Fluid mechanics model compartment
2.3.1. Microvascular and interstitial fluid flow
Microvascular haemodynamics is taken to obey the Hagen–

Poiseuille law, where the capillary blood flow is assumed axial,

steady, laminar and viscous [19]. Thus, the flow rate is given

by _Qvsc ¼ �pR4 Dpvsc=(8mB Lvsc), where R is the capillary

lumen radius, Dpvsc the vascular pressure drop within a capillary

segment, Lvsc, and mB the dynamic viscosity of blood which is

assumed homogeneous and constant in time. As in [13], the

interstitial space is modelled as a porous biofluid-saturated

medium, and interstitial fluid flow is modelled using Darcy’s

law. Thus, the flow rate at the interstitium is given by [1]
_Qint ¼ �KintAintDpint=Lint, where Kint and Lint are the average

hydraulic conductivity and the relative distance between two

material points in the interstitium whose (interstitial fluid)

pressure difference is denoted by Dpint, while Aint denotes the

cross-sectional area of the interstitium. Finally, biofluid transport

across the endothelium of the capillaries is modelled using
Starling’s law [12], with the transvascular flow rate expressed

by _Qtrv ¼ KvscAvscDpv-i, where Avsc is the surface area of the

blood vessel wall, Dpv-i is the difference between the vascular

and interstitial pressure. Also, Kvsc is the hydraulic conductivity

of the endothelium and can be expressed as a function of the size

of the pores size, rp, the fraction of vessel wall surface occupied

by pores, gp, the thickness of the vascular wall, h, and the plasma

dynamic viscosity, mP, via [20] Kvsc ¼ gp r2
p=(8mPh).

All three flow-rate equations are coupled together in a

model for the vascular and interstitial pressures that is formu-

lated as a linear system of equations expressed at the vascular

nodes of the network and the interstitial nodes of the three-

dimensional finite-element grid (see figure 2). Also, an

interconnected grid of tissue and vascular nodes is considered

to bridge the two non-conforming meshes, hence, model flow

between the vascular and interstitial (extravascular) space.

Biofluid flow is solved numerically for the vascular and

interstitial pressures while proper pressure/flow boundary

conditions are applied on the terminal nodal points of the

discretized domains. For more details about the boundary

and initial conditions considered in this model, the reader

should refer to our previous work [13].

2.3.2. Drug delivery
The continuity equation for the drug concentration in the

bloodstream, cv, is given from [1,19]

_cv þ vvsc � rcv ¼ 0, (2:3)

where the blood mean velocity, vvsc, is computed after solving

the equations governing the intra-, trans- and extravascular

flow (as explained above).
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Figure 2. Cut-through of the three-dimensional finite-element mesh used to discretize the tumour and the host tissue (volume of analysed domain ¼ 1.2 cm3).
The solid red lines depict the idealized vascular network used in the simulations (black dots correspond to the vascular nodes) which is relatively evenly distributed
in three-dimensional space. Note that the two model discretizations are non-conforming. On the right, the colouring of the hexahedral elements demonstrates the
visible partitions of the mesh, as decomposed for the purposes of the scalable in silico executions. (Online version in colour.)
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Following [21], the drug in the extravascular space is ident-

ified in three discrete states: (i) the free-drug state, (ii) the

bound-drug state and (iii) the internalized drug state, with

their concentrations symbolized as cf, cb and ci respectively.

The balance of the free-drug concentration, cf, is described via

the advection–diffusion–reaction equation [12]

_cf þ vint � rcf �r � [Df � rcf] ¼ Fvsc þFlmp � kone
�bcf

þ koffcb � dfcf , (2:4)

while the mass balance of the other two variables is described

through a pair of ordinary differential equations

_cb ¼ kone
�bcf � koffcb � kintcb (2:5)

and
_ci ¼ kint cb � dici, (2:6)

where vint is the interstitial fluid velocity vector (calculated

through Darcy’s law after evaluating pint; see §2.3.1) and �b is a

model parameter that controls the drug association to the cancer-

ous cells. The diffusion tensor of the drug molecule or drug-

borne nanoparticle is Df (assumed here isotropic, i.e. ¼DdI),

while kon, koff and kint are the association (binding), disassociation

and internalization rate coefficients, respectively, and df/di is the

half-life of the free drug and the decay rate of the drug—owing to

the depletion of the cancer cells after the drug has found its target

and the drug natural decay—respectively. The last two source

terms in equation (2.4) come from the contribution of the vascu-

lar and the lymphatic network. Using Starling’s law, the rate of

solute transport per unit volume through the microvascular

endothelial wall can be expressed as [22] Fvsc ¼ Pvsc,dSvsc(cv 2

cf ) þ Kvsc Svsc (1 2 sf,vsc) Dpv-ic, where c ¼ cv if pvsc . pint, else

c ¼ cf; lymphatics contribution is expressed as Flmp ¼ Klmp-

Slmp(1 2 sf,lmp)( plmp 2 pint)cf, where Pvsc,d is the diffusive

permeability of the blood vessels with respect to the solvent

(drug molecule), Klmp the hydraulic permeability of the

lymphs’ wall and sf,vsc/sf,lmp the solvent drag reflection coeffi-

cient at the blood vessel/lymphatic wall. Both latter quantities

can be estimated numerically as a function of the drug size to

the size of the pores of the vessel wall [20], while Svsc is microvas-

cular density, i.e. the vessels’ surface area per unit volume of

tissue, and Slmp the lymphatic vessels’ density. For simplicity,

the fluid pressure at the lymphatic vessels is assumed plmp ¼ 0

everywhere in the domain of analysis.

Assuming the absence of interactions of the free drug with

other macromolecules or/and enzymes, drug diffusion is con-

trolled by the size of the drug; thus, it can be described

through the Stokes–Einstein equation [23]—valid for when mod-

elling chemotherapy transport: Dd ¼ kB T/(3pmIsc), where kB

the Boltzmann constant, T the absolute (reference) temperature
and sc the size of the molecule (or hydrodynamic diameter

if assumed spherical) of the free drug. However, for rigid par-

ticles (e.g. polymer vesicles, nanoparticles), Phillips et al. [24]

proposed a modified diffusion formula that accounts for the

hydrodynamic interactions of the drug with a fibrous matrix

(here the collagenous matrix of the host stroma) that reads

Dd ¼ D0=(1þ
ffiffiffiffiffiffiffi

3rc

p
þ rc); D0 is calculated from the previous

equation, rc ¼ s2
c=3k, while the matrix permeability, k, can

be expressed with respect to the hydrodynamic diameter of

the free drug and the porosity of the ECM, 1s, through k ¼

1s sc/kY, with kY being the Kozeny factor [25].

Equation (2.3) is discretized using two-node line elements

that represent blood vessel segments of the microvascular net-

work. For the outlet boundary nodes, zero-flux outflow

condition is prescribed, i.e. dcv/dL ¼ 0, while for the inlet

boundary nodes, cv is prescribed explicitly to effectively model

bolus injection of the drug through the exponential decay func-

tion: cv(t) ¼ cv-max exp[2t/tc], where cv-max is the maximum

dose concentration of the drug that has reached the microcircula-

tion system at the tumour site and tc the half-time of the drug.

Similarly to the Biochemics model, differential equations (2.4)—

(2.6) were discretized using the same finite element grid while

time integration was accomplished via the forward Euler

method using a ‘lumped mass’ capacity matrix to substantially

speed up the numerical simulations.

2.4. Microvasculature/Angiogenesis compartment
A detailed description of this compartment can be found in

the methodology description in [13]; here we present a brief

overview. The Microvasculature/Angiogenesis compartment

encompasses: (a) the elongation and extension of the tip capillary

branches, the sprouting of existing blood vessels and the for-

mation of vascular anastomoses, and (b) the remodelling of the

capillaries’ endothelial wall, the lumen size, the thickness of

the wall, and the structural integrity of the vessels. As explained

in the Bioechemics model above, the drug permits degrading the

ECM only, whereas pruning of tumour vessels, disruption of

the vascular remodelling, or modulation of the permeation

of the endothelium is not accounted for in the present in silico
framework; we leave this for future work.

2.5. Cancer model solution strategy
Numerical solution of the different compartments (as shown in

figure 1) of the proposed in silico cancer modelling framework is

accomplished in a staggered manner. The solution strategy

employs five different time discretization scales, with each

core or sub-compartment having a separate timestep. We iterate

in time and we solve the equations involved in each
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compartment based on the timestep adopted for each one of

them. Firstly, the balance equations for the Biochemics compart-

ment are solved numerically, the solution of which is projected

into the Solid mechanics compartment. Secondly, equilibrium is

sought numerically in the Solid mechanics compartment, and

then the numerical solution (strain, stress) is projected into the

Microvasculature/Angiogenesis. At this point, within Microvascu-
lature/Angiogenesis, the structural integrity of the vessels is

evaluated and the tree is updated (i.e. sprouting, branching,

vessel compression, etc.) accordingly. Subsequently, the flow

equations of the Fluid mechanics compartment are solved to

compute interstitial, intra- and transvascular flow (eqns (2)–

(4) in [14]); then equations (2.3)–(2.6) of the Drug delivery sub-

compartment are solved to compute drug concentrations, the

solution of which is distributed in the Biochemics and Solid mech-
anics models. The above steps are repeated until the simulation

time has reached the desired end time point. However, it is

important to highlight here that—regardless of the timestep

adopted for the Solid/Fluid mechanics and Microvasculature/
Angiogenesis compartments respectively—after solving the

solid mechanics equations we enforce checking the vascular

integrity, and subsequently the (bio)fluid flow equations are

solved.
3. Results
We run simulations of tumour growth to replicate the

development of a mammary carcinoma xenograft in

immunodeficient mice [16]. In this study, we employed

data of an in vivo murine syngeneic mammary MCaIV
adenocarcinoma, as in [26,27]. The in silico cancer

growth and angiogenesis model has been tested and vali-

dated in our previous paper [13]. Here, we model and

simulate the single-dose administration of cancer cell kill-

ing drugs. The drugs investigated here varied with respect

to their hydrodynamic size, i.e. the molecule/particle

diameter was set approximately equal to 1 nm, 10 nm

and 50 nm in order to mimic chemotherapy and nano-

medicine transport in the animal model, respectively. All

drugs were assumed to possess identical pharmacokinetic

properties, i.e. excretion, absorption, internalization,

decay. To simplify this study, the amount of in silico intra-

venous administration of the chemical was set the same

for all drugs. We note, however, that this assumption is

not representative of experimental protocols using labora-

tory mice; usually, the amount of drug administered

varies with respect to the type of the drug. For example,

administration of doxorubicin can span between 3 and 8

mg kg21 while for nanoparticles this can vary from greater

than 10 mg kg21 [28]. The sole parameter that varied with

respect to the drug pharmacokinetics was the half-time of

the drug, tc, and was set based on experimentally

measured clearance and drug circulation times in the

bloodstream: 4 h, 10 h and 16 h, respectively [26]. In

view of modelling flow in the capillaries using Poiseuille’s

law and the inflow/outflow boundary conditions con-

sidered in the simulations, the numerically evaluated

average blood flow rate at the healthy capillaries is

approximately 2.5 cm3 h21. Thus, the amount of drug
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supplied over the period of the time-window of obser-

vation of the tumour development corresponded to 10,

25 and 40 times the maximum (intravenous) dose

concentration of the drug, cv2max.

Furthermore, in order to investigate the relationship

between drug size and interstitial tissue hydraulic conductivity,

simulations were also conducted with two different ECM

hydraulic permeabilities: k ¼ 6:4� 10�15 m2 (Pa s)21, hence-

forth termed ‘high porosity’; and k ¼ 6:4� 10�16 m2 (Pa s)21,

henceforth termed ‘low porosity’.

The model parameters required to simulate drug trans-

port from equations (2.4)–(2.6) were taken from relevant

works in the literature (e.g. [12,29]). We note that the

adopted model parameters for the Solid mechanics, Fluid
mechanics and Biochemics compartments are summarized in

the electronic supplementary material. All simulations

were carried out using our in-house developed in silico
modelling framework—details about the numerical

implementation of the framework are provided in the elec-

tronic supplementary material of our previous paper [14].

The Cþþ code of the in silico framework can be accessed

online from the Bitbucket project: Finite Element Bioengineering
in 3D (FEB3).

3.1. Drug size and interstitial porosity affects spatial
distribution of delivery

Images of the predicted spatial distribution of the three drugs

after single-dose injections at days 10, 20 and 30 are shown in

figures 3 and 4, for high porosity and low porosity, respect-

ively. Clear differences are observed between the two
porosities, for all drug sizes; for high ECM porosity, the

drug concentration is higher both inside and outside the

tumour, while for low ECM porosity, the drug concentration

is lower and approximately uniform throughout the volume

(see electronic supplementary material, figure S1). Interest-

ingly, both porosities produce an approximately uniform

distribution of the cytotoxic drug (1 nm), but a highly hetero-

geneous distribution of the larger drugs (10 and 50 nm). This

heterogeneity is driven by the spatially and time varying

interstitial fluid velocity field in the ECM (see electronic sup-

plementary material, figure S2), upon which the larger drugs

are more dependent due to their motion being primarily gov-

erned by convective motion [3]. The accumulation of large

molecules, such as nanoparticles, in non-tumour tissue is a

hallmark of the enhanced permeability and retention (EPR)

effect, a topic of heated debate [30,31].

3.2. Nanoparticles require high interstitial porosity to
reduce tumour volume

To test the relationship between drug delivery efficacy and

ECM hydraulic conductivity, figure 5 shows tumour volume

over time for the control case and injections at days 10, 20

and 30, for each drug type, for high porosity (left column),

and low porosity (right column) ECMs. A clear dependency

of efficacy on porosity is observed, with low porosity reducing

the efficacy of all three drug types. However, the cytotoxic

drug (1 nm) is able to regress the tumour at both porosities,

while the nanoparticles (10 and 50 nm) require high porosity

to cause tumour regression; at low porosity, only the rate of

growth is affected, and for the largest nanoparticle the effect

https://bitbucket.org/vasvav/feb3-finite-element-bioengineering-in-3d/wiki/Home
https://bitbucket.org/vasvav/feb3-finite-element-bioengineering-in-3d/wiki/Home
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is almost negligible. This prediction recapitulates experimen-

tal observations of improved delivery efficacy as a result of

ECM-modifying treatment with the anti-fibrotic drug trani-

last; specifically, that reducing matrix density—or,

equivalently, increasing matrix porosity—improves delivery

of drugs in a size-independent manner [32]. It has been also

documented that drugs targeting ECM-remodelling enzymes,

such as FAK and hyaluronidase inhibitors, effectively slow

tumour growth [33]. A similar effect was also observed with

a cytotoxic drug when reducing the concentration of the

high molecular weight glycosaminoglycan hyaluronan and

hence increasing matrix porosity [34]. Here, we further predict

that there is a regime where cytotoxics are effective, but not

nanoparticles. Interestingly, the model also predicts that nano-

particles benefit from later injection times at high porosity;

here this is due to the elevated interstitial fluid pressure pro-

duced by larger tumours increasing the magnitude of the

convective flow. The phenomenon of growth-induced

increases in interstitial fluid pressure has been previously

reported in in vivo mouse experiments [35].

3.3. Transvascular velocity depends on both tissue
porosity and drug size

The model was used to predict the transvascular fluid vel-

ocity, _Qtrv, for different drug types administered separately

at days 10, 20 and 30, and for low and high EBM porosity.
The resulting mean transvascular fluid velocity as a function

of distance from the tumour centre is shown in figure 6, at

5 days (left column) and 10 days (right column) after the

respective injection. For the earliest administration (day 10),

the distribution is largely independent of drug type at both

time points. However, for later administrations (days 20

and 30), there is a dependency of transvascular flow on

both drug size and porosity, with low porosity producing a

peak closer to the tumour centre than high porosity, and

the cytoxic drug peaking closer to the tumour centre than

the nanoparticles. This drives the porosity-dependent pen-

etration of the drug observed in figures 3 and 4.

Furthermore, the width of the distribution after cytotoxic

drug delivery is predicted to be broader than after nanopar-

ticle delivery, which suggests that a broader region of fluid

pressure normalization is achieved after cytotoxic delivery.

This supports our previous predictions of vascular network

structure normalization by cytotoxic drug delivery [14], and

given that the effects persist for at least 10 days after injection

(as previously highlighted in terms of drug half-time), this

prediction has implications for staged drug therapy.
4. Conclusion
Here we have described an in silico platform for quantitat-

ively simulating the delivery of drugs of varying
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properties to a dynamically changing tumour–host

environment. The proposed platform builds on our pre-

vious work [13,14] and generalizes to allow for both

diffusive and convective transport mechanisms, hence

enabling investigation into the dependency of delivery effi-

cacy on drug size and extracellular matrix density. Future

work will integrate our platform with multiscale methods

[36] to test how host vasculature and tissue structure

affect delivery efficacy of nanoparticles, and hence identify
the optimal physiological conditions for size-dependent

therapeutic drug delivery.

Data accessibility. The in silico platform can be accessed from the online
repository on Bitbucket, FEB3: https://bitbucket.org/vasvav/feb3-
finite-element-bioengineering-in-3d/wiki/Home.
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