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Abstract. Progressive diseases worsen over time and can be charac-
terised by sequences of events that correspond to changes in observable
features of disease progression. Here we connect ideas from two formerly
separate methodologies – event-based and hidden Markov modelling –
to derive a new generative model of disease progression: the Temporal
Event-Based Model (TEBM). TEBM can uniquely infer the most likely
group-level sequence and timing of events (natural history) from mixed
data types. Moreover, it can infer and predict individual-level trajec-
tories (prognosis) even when data are missing, giving it high clinical
utility. Here we derive TEBM and provide an inference scheme based on
the expectation maximisation algorithm. We use imaging, clinical and
biofluid data from the Alzheimer’s Disease Neuroimaging Initiative to
demonstrate the validity and utility of our model. First, we train TEBM
to uncover a new sequence and timing of events in Alzheimer’s disease,
which are inferred to occur over a period of ∼17.6 years. Next, we demon-
strate the utility of TEBM in predicting clinical progression, and that
TEBM provides improved utility over a comparative disease progression
model. Finally, we demonstrate that TEBM maintains predictive accu-
racy with up to 50% missing data. These results support the clinical
validity of TEBM and its broader utility in real-world medical applica-
tions.

Keywords: Bayesian network · Markov jump process · Disease
progression model · Prognosis · Dementia

1 Introduction

Progressive diseases such as Alzheimer’s disease (AD) are characterised by mono-
tonic deterioration in functional, cognitive and physical abilities over a period of

Data used in preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investiga-
tors within the ADNI contributed to the design and implementation of ADNI and/or
provided data but did not participate in analysis or writing of this report.
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years to decades [1]. AD has a long prodromal phase before symptoms become
manifest (∼20 years), which presents an opportunity for therapeutic interven-
tion if individuals can be identified at an early stage in their disease trajectory
[2]. Clinical trials for disease-modifying therapies in AD would also benefit from
methods that can stratify participants, both in terms of individual-level disease
stage and rate of progression [3].

Data-driven models of disease progression can be used to learn hidden infor-
mation, such as individual-level stage, from observed data [4]. Broadly speaking,
disease progression models can be categorised as regression-based or state-space
models. Recent examples of regression-based methods include Bayesian mixed-
effects models [5,6]; and a time-reparametrised Gaussian Process Progression
Model (GPPM) [7]. However, [5,6] require strong assumptions of sigmoidal forms
for trajectory dynamics, which may not reflect the true form in the data. The
GPPM removes the sigmoidal assumption and allows for non-parametric dynam-
ics, but requires regularisation to avoid over-fitting which introduces additional
complexity, and does not learn individual-level rates of progression.

A state-space model of disease progression was proposed by [8], who derived
a modified continuous time hidden Markov model (CTHMM), which they used
to learn a set of disease states and transition times between these states from
electronic health record data. However, CTHMMs fit distribution parameters for
each state directly, which increases the number of model parameters that need
to be inferred with the number of states. This in turn increases the likelihood
of over-fitting [9], which is a well known problem for Markov models when data
are sparse and/or the model is complex [10].

An event-based model (EBM) of disease progression was first proposed by
[11]. The EBM defines disease progression as a monotonically ordered sequence
of binary abnormality events, and as such is essentially a state-space model.
Unlike a hidden Markov model, the EBM uses the monotonicity assumption to
define a prior form to the distributions generating the data in each hidden state,
which simplifies the inference problem. The robustness and predictive utility
of the EBM was demonstrated by [12] and extended by [13] to enable both
subtype (i.e., multiple sequence) and stage inference (SuStaIn). The simplicity,
interpretability and utility of EBM and SuStaIn has made them popular tools
for revealing new disease insights [12–20], for validating new features of disease
progression (biomarkers) [21], and for patient stratification [13,20].

However, EBM and SuStaIn are formulated for cross-sectional data, and
hence can only infer the sequence of events but not their transition times,
and cannot account for individual-level time series data. Previous work has
attempted to address the problem of estimating transition times in an ad hoc
manner by first fitting an EBM and then correlating its predictions with a sepa-
rate longitudinal model [16]. However, this approach provides only an approxima-
tion of time between events that is confounded by differing model assumptions.
As such there is demand for a single unified method that generalises the EBM
to accommodate longitudinal data and to simultaneously infer both the order
and timing of events.



Temporal Event-Based Model 585

Here we address this problem, which is long-standing in the field of dis-
ease progression modelling [11,22]. We connect ideas from two formerly separate
methodologies – event-based and hidden Markov modelling – to derive a new
generative temporal event-based model (TEBM) of disease progression. As a dis-
ease progression model, TEBM provides a natural framework to integrate mixed
data types, such as imaging and clinical markers, in an informative manner.
TEBM therefore has strong clinical utility, as it learns an interpretable group-
level model of how mixed biomarkers change over time. Such a model for AD
was first hypothesised by [23], and [6,7,16] all reported trajectories of various
biomarker changes, but TEBM is the first to provide a single unified methodology
for learning data-driven sequences and transition times in progressive diseases.
As such, this paper has three main contributions.

1. We derive TEBM by generalising the EBM to longitudinal data. TEBM inher-
its the capabilities of EBM, which can i) learn an interpretable sequence of
events underlying disease progression; ii) learn an individual-level disease
stage; iii) handle partially missing data (when an individual does not have
measurements for every feature). In addition, TEBM can uniquely iv) learn
transition times; v) learn an individual-level probability of progression.

2. We devise a novel algorithm for inference of the TEBM parameters.
3. We apply TEBM to data from the Alzheimer’s Disease Neuroimaging Ini-

tiative (ADNI) to reveal a new sequence and timing of imaging, clinical and
biofluid events in Alzheimer’s disease, and to demonstrate TEBM’s improved
utility over a CTHMM, and its performance in the presence of missing data.

2 Theory

2.1 Temporal Event-Based Model

To formulate TEBM, we make three assumptions, namely i) monotonic
biomarker change; ii) a consistent event sequence across the whole sample; and
iii) Markov (memoryless) stage transitions. We can write the TEBM joint dis-
tribution over all variables in a hierarchical Bayesian framework:

P (S, θ, k, Y ) = P (S) · P (θ|S) · P (k|θ, S) · P (Y |k, θ, S). (1)

Here S is the hidden sequence of events, θ are the distribution parameters gen-
erating the data, k is the hidden disease stage, and Y are the observed data.
Graphical models of CTHMM, EBM and TEBM are shown in Fig. 1. Note that
we have assumed conditional independence of S from k; that is, the complete set
of disease progression stages is independent of the time of observation. Assum-
ing independence between observed features i = 1, ..., I, if a patient j = 1, ..., J
is at latent stage kj,t = 0, ..., N in the progression model, the likelihood of their
data Yj,t observed at time t = 1, ..., Tj is given by:

P (Yj,t|kj,t, θ, S) =
I∏

i=1

P (Yi,j,t|kj,t, θi, S). (2)
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Fig. 1. Graphical models for (a) CTHMM, (b) EBM, and (c) TEBM. Hidden variables
are denoted by circles, observations by squares. S: sequence of events; θ: distribution
parameters; k: disease stage; Y : observed data; T : observed time.

Here θi are the distribution parameters for feature i, defined by a hidden set of
events S = (s(1), ..., S(N)). Following [11], we enforce the monotonicity assump-
tion by requiring S to be ordered, which is equivalent to requiring that feature i
is monotonic at the group-level. This assumption is necessary to allow snapshots
from different individuals to inform on the full event ordering. Next, we assume
a Markov jump process [24] between time-points:

P (Yj |kj , θ, S) = P (kj,t=0)
Tj∏

t=1

P (kj,t|kj,t−1)
Tj∏

t=0

I∏

i=1

P (Yi,j,t|kj,t, θi, S). (3)

To obtain an event-based model, we now define prior values for the distribution
parameters θ for each stage k in sequence S. Following [12] we choose a two-
component Gaussian mixture model to describe the data likelihood:

I∏

i=1

P (Yi,j,t|kj,t, θi, S) =
kj,t∏

i=1

P (Yi,j,t|kj,t, θ
p
i , S)

I∏

i=kj,t+1

P (Yi,j,t|kj,t, θ
c
i , S). (4)

Here θp
i = [μp

i , σ
p
i , wp

i ] and θc
i = [μc

i , σ
c
i , w

c
i ] are the mean, μ, standard deviation,

σ, and mixture weights, w, for the patient and control distributions, respectively.
Note that these distributions are fit prior to inference, which requires our data
to contain labels for patients and controls (see Sect. 3); however, once θp

i and θc
i

have been fit, the model can infer S without any labels. One of the strengths
of the mixture model approach is that when feature data are missing, the two
probabilities on the RHS of Eq. 4 can simply be set equal.

To obtain the total data likelihood, we marginalize over the hidden stage
k and assume independence between measurements from different individuals j
(dropping indices j, t in the sum for notational simplicity):
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P (Y |θ, S) =
J∏

j=1

⎡

⎣
N∑

k=0

P (kj,t=0)
Tj∏

t=1

P (kj,t|kj,t−1)

Tj∏

t=0

kj,t∏

i=1

P (Yi,j,t|kj,t, θ
p
i , S)

I∏

i=kj,t+1

P (Yi,j,t|kj,t, θ
c
i , S)

⎤

⎦ . (5)

We can now use Bayes’ theorem to obtain the posterior distribution over S. We
note that Eq. 5 is the time generalisation of the models presented by [11,12,14],
and for Tj = 1 it reduces to those models.

With this definition made, we now make the usual Markov assumptions [24]
to obtain the form of the N × N dimensional transition generator matrix Qa,b:

expm(ΔQ)a,b = P (kj,t = a|kj,t−1 = b,Δ) ≡ Aa,b(Δ). (6)

Here we assume a homogeneous continuous-time process, τ , and a fixed time
interval, Δ, that is matrix exponentially distributed, Δ ∼ expm(Δ), between
stages a, b. Note that as we are only considering Δ constant, Aa,b is independent
of time, i.e., Aa,b(Δ) ≡ Aa,b. The N dimensional initial stage probability vector
πa is defined as:

πa = P (kj,t=0 = a). (7)

Finally, the expected duration of each stage (sojourn time), δk, is given by:

δk =
∞∑

δ=1

δPk(δ) =
1

1 − pkk
. (8)

Here Pk(δ) is the probability density function of δ in stage k, and pkk are the
diagonal elements of the transition matrix Aa,b.

2.2 Inference

We aim to learn the sequence S, initial probability πa, and transition matrix Aa,b,
that maximise the complete data log likelihood, L(S, π,A) = logP (Y |S, π,A; θ).
As described in Sect. 2, we first obtain θ by fitting Gaussian mixture models
to the feature distributions of the patient and control sub-groups. We then use
a nested inference scheme based on iteratively optimising the sequence S, and
fitting the initial probability πa and transition matrix Aa,b, to find a local (possi-
bly global) maximum via a nested application of the Expectation-Maximisation
(EM) algorithm. At the first EM step, S is optimised for the current values of the
initial probability π′

a and transition matrix A′
a,b, by permuting the position of

every event separately while keeping the others fixed. At the second step, πa and
Aa,b are fitted for the current sequence S′ using the standard forward-backward
algorithm [24]. Here we apply only a single EM pass, as iterative updating of πa

and Aa,b can cause over-fitting for sparse [10] and noisy data.
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2.3 Staging

After fitting S, πa and Aa,b, we infer the most likely Markov chain (i.e., tra-
jectory) for each individual using the standard Viterbi algorithm [24]. We can
use TEBM to predict individual-level future stage by multiplying the transition
matrix, Aa,b, with the posterior probability for the individual at time t, and
selecting the maximum likelihood stage:

arg maxkP (kt+1 = b|S) = arg maxkP (kt = a|S) · Aa,b. (9)

We can also use TEBM to define an individual-level ‘probability of progression’
that leverages the full information from the posterior, which we define as the
normalised ratio of the predicted and inferred posteriors:

P (kt, kt+1|S) = 1 − 1
I

∑

b

P (kt = a|S) · Aa,b

P (kt = a|S) · Aa,b + P (kt = b|S)
. (10)

For a forward-only transition matrix, Eq. 10 will equal zero if the predicted and
inferred posteriors are equal (i.e., zero probability of progression), and non-zero
otherwise.

3 Experiments and Results

3.1 Alzheimer’s Disease Data

We use data from the ADNI study, a longitudinal multi-centre observational
study of AD [25]. We select 468 participants (119 CN: cognitively normal; 297
MCI: mild cognitive impairment; 29 AD: manifest AD; 23 NA: not available), and
three time-points per participant (baseline and follow-ups at 12 and 24 months).
Individuals were allowed to have partially missing data at any time-point; we
refer to this dataset as ‘Dataset 1’. To facilitate direct comparison between
TEBM and CTHMM (the latter of which cannot handle partially missing data by
default), we also select a subset of 368 individuals without partially missing data
at any time-point, but who can now have different numbers of time-points; we
refer to this dataset as ‘Dataset 2’. We train on a mix of 12 clinical, imaging and
biofluid features. The clinical data are three cognitive markers: ADAS-13, Rey
Auditory Verbal Learning Test (RAVLT) and Mini-Mental State Examination
(MMSE). The imaging data are T1-weighted 3T structural magnetic resonance
imaging (MRI) scans, post-processed to produce regional volumes using the GIF
segmentation tool [26]. We select a set of sub-cortical and cortical regional vol-
umes with reported sensitivity to AD pathology, namely the hippocampus, ven-
tricles, entorhinal, mid-temporal, and fusiform, and the whole brain [27]. The
biofluid data are three cerebrospinal fluid markers: amyloid-β1−42 (ABETA),
phosphorylated tau (PTAU) and total tau (TAU). The ADNI dataset used in
this paper is freely available upon registering with an ADNI account and down-
loading the TADPOLE challenge dataset.
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3.2 Model Training

We compare the TEBM and CTHMM models. To ensure fair comparison, we
impose a constraint on both models by placing a 2nd order forward-backward
prior on the transition matrix. For TEBM, we fit Gaussian mixture models to
the distributions of AD (patients) and CN (controls) sub-groups (as in [12])
prior to performing inference, and use 16 start-points for the EM algorithm. For
CTHMM, we apply the standard forward-backward algorithm and iterate the
likelihood to convergence within 10−3 of the total model likelihood. We initialise
the CTHMM prior mean and covariance matrices from the training data, using
standard k-means and the feature covariance, respectively. Finally, we optimise
the number of states in the CTHMM to obtain the maximum likelihood fit.
TEBM is implemented and parallelised in Python and is available open source1.
The code takes 3 min to train TEBM with 4 start-points on Dataset 1 using a
4-core 2.7 GHz Intel R© CoreTM i7-7500U CPU (i.e., 1 start-point per core).

3.3 TEBM Parameters

We train TEBM on Dataset 1 to infer S, π and A. Figure 2 shows (a) the
Gaussian mixture models for each feature, (b) the initial probability density dis-
tribution π; and (c) the event-based transition matrix, A, with stages ordered
by S. The Gaussian mixture models demonstrate smooth transition probabili-
ties between patient and control distributions (denoted by ‘p(event occurred)’),
indicating suitable fits. The initial probability distribution is most dense around
the earliest stages (kj,t=0 ≤ 6), which reflects the large proportion of CN and
MCI individuals in the cohort. The event-based transition matrix is diagonally-
dominant, with smooth transitions between stages and predominantly larger
forward than backward probabilities, supporting the monotonicity hypothesis.

Fig. 2. TEBM parameters inferred from ADNI. (a) Gaussian mixture models fit to
distributions of CN (green) and AD (red) groups. (b) Initial probability density, π,
inferred by TEBM. (c) Event-based transition matrix, A, inferred by TEBM. Events
are ordered by the most likely ordering, S. (Color figure online)

1 https://github.com/pawij/tebm.

https://github.com/pawij/tebm
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3.4 Alzheimer’s Disease Timeline

We use TEBM to infer the group-level sequence and time between events from
Dataset 1, the latter of which is not possible using EBM. Figure 3 shows the
corresponding order and timeline of events, and stages for two representative
patients estimated by TEBM. This timeline is the first of its type in the field
of AD progression modelling, and reveals a chain of observable events occurring
over an inferred period of ∼17.6 years. The ordering largely agrees with previous
model-based analyses [12,16], and TEBM provides additional information on the
time between events. Early changes in biofluid measures (ABETA, TAU, PTAU)
over a relatively short timescale have been proposed in a recent hypothetical
model of AD biomarker trajectories [23], though no actual timing information
is reported. We also observe early neurodegeneration (represented here by the
ventricles), followed by a chain of cognitive and structural brain volume changes,
with change across the whole brain occurring last.

Fig. 3. AD timeline inferred by TEBM. The order of events on the horizontal axis is
given by S, and the mean time between events is calculated from A. Baseline stage
(solid arrow) and predicted next stage (shaded arrow, if different to baseline) estimated
by TEBM for two example patients from the MCI and AD groups are shown.

3.5 Individual Trajectories

We demonstrate that TEBM can stratify individuals by progression rate and
provide a prediction of future stage with uncertainty, which is not possible using
EBM. We use TEBM to infer the most likely stage sequence, and predict the
most likely next (i.e., unseen) stage over the following year for three individuals.
The next most likely unseen stage is predicted according to Eq. 9, with uncer-
tainty estimated by sampling from the posterior. Figure 4 shows three individ-
ual trajectories, which were randomly selected from three categories according
to their change in stage: stable-stable (no change in stage); progressive-stable
(observed increase in stage followed by no predicted change); and progressive-
progressive (observed increase in stage followed by predicted increase in stage).
These examples highlight the utility of TEBM for clinical applications that aim
to stratify by progression rate. If one were to stratify progression rates according
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to only observed data, they would be inclined to group individual (a) as stable,
(b) as rapidly progressive, and (c) as moderately progressive. However, TEBM
predicts that individual (b) remains stable for the following year, while individ-
ual (c) increases in stage, making the latter more suitable for observing changes
over the following year. As such, TEBM provides additional utility in clinical
applications (e.g., prognosis) and clinical trial design (e.g., cohort enrichment).

Fig. 4. TEBM individual-level staging. Solid lines represent within-sample inference,
and dotted lines represent prediction. Uncertainty was estimated using 100 samples
from the posterior at each time-point.

3.6 Prediction of Progression Rate

Fig. 5. Dependency of change in
MMSE on TEBM probability of
progression, for individuals start-
ing at TEBM stage = 7 (abnormal
MMSE).

We now demonstrate TEBM’s ability to pre-
dict future rate of progression, which is not
possible using EBM. Specifically, we examine
the relationship between the rate of change in
MMSE – a key cognitive test score used for
patient inclusion in AD clinical trials – and
the individual-level probability of progres-
sion predicted by TEBM (Eq. 10). We train
TEBM on 25% of Dataset 1, but use only the
baseline measurement from each individual in
the test set to predict future progression; this
best reflects a baseline clinical trial. Further-
more, we utilise TEBM to select a subset of
individuals with a baseline stage = 7, corre-
sponding to abnormal MMSE; this is neces-
sary as individuals at earlier stages are less
likely to exhibit abnormal MMSE and hence
add noise. We find a nearly significant depen-
dency of MMSE rate of change on TEBM probability of progression (Fig. 5),
and in the expected direction, using a linear fixed effects model (β = −20.4,
p = 0.06).
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3.7 Comparative Model Performance

We train TEBM and CTHMM to infer individual-level stage sequences and
hence compare predictive accuracy on a common task. Specifically, we use base-
line stage as a predictor of conversion from CN to MCI, or MCI to AD, over
a period of two years. Here predicted converters are defined as people with a
stage greater than a threshold stage. We calculate the area under the receiver
operating characteristic curve (AU-ROC), and perform 10-fold cross-validation
to estimate prediction uncertainty. Table 1(a) shows that TEBM performs sub-
stantially better than CTHMM using the same dataset. We also find that TEBM
performs better on Dataset 1 than 2, indicating the model benefits when trained
on more individuals with more time-points and partially missing data, rather
than fewer individuals with fewer time-points and complete data. Note EBM
can also infer baseline stage; we find it returns similar performance as TEBM.

Table 1. Model performance for the task of predicting conversion.

(a) TEBM and CTHMM performance for

the task of predicting conversion. Only

Dataset 2 is reported for CTHMM as it

cannot handle partially missing data.

Model AU-ROC

TEBM (Dataset 1) 0.755 ± 0.12

TEBM (Dataset 2) 0.717 ± 0.15

CTHMM (Dataset 2) 0.489 ± 0.22

(b) TEBM performance for the task of

predicting conversion with pre-defined

partially missing data, using Dataset 2.

% missing AU-ROC

25% 0.756 ± 0.12

33% 0.729 ± 0.13

50% 0.723 ± 0.17

3.8 Performance with Missing Data

Finally, we demonstrate TEBM’s ability to handle missing data. We randomly
discard 25%, 33% or 50% of the feature data from each individual in Dataset
2 and re-train TEBM. As in Sect. 3.7, we use prediction of conversion as the
performance metric, and 10-fold cross-validation. Table 1(b) shows that TEBM
maintains consistent performance with up to 50% missing data.

4 Discussion

In this paper we have introduced TEBM, a new generative state-space model of
disease progression that combines the strengths of two formerly separate method-
ologies – a priori structure from event-based modelling with temporal informa-
tion from hidden Markov modelling – to provide a method that can learn tran-
sition times in event sequences. The mathematical innovation of our work is to
reformulate the EBM in a CTHMM framework (or conversely, the CTHMM in
an event-based framework). To our knowledge this is the first such model of its
type. We also applied TEBM to reveal a new sequence and timing of key patho-
logical events in AD, and to demonstrate its utility in prediction of conversion
and progression at the individual level in the presence of missing data.
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TEBM is particularly applicable to clinical trials, where it could be used to
inform biomarker and cohort selection criteria. In terms of clinical practice, a
key corollary benefit of TEBM’s formulation is that it can infer probabilistic
estimates of group- and individual-level progression from datasets with missing
data, both in terms of observed features and time-points. This gives it high utility
in real-world medical applications, where missing data are present in most (if
not all) patient studies, and in clinical applications where resources are scarce
and/or it is too expensive to observe a patient multiple times.

Future technical work on TEBM will be focused on relaxing its assump-
tions, namely i) monotonic biomarker change; ii) a consistent event sequence
across the whole sample; and iii) Markov (memoryless) stage transitions. In
addition2, the assumption of fixed time intervals will be relaxed in future work
to accommodate variable intervals between observations, following [28]. Assump-
tion i) is both a limitation and a strength: it allows us to simplify our model at
the expense of requiring monotonic biomarker change; as shown here, for truly
monotonic clinical, imaging and biofluid markers it only provides benefits. How-
ever for non-monotonic markers – such as brain connectivity – either the model
or data would need to be adapted. Assumptions ii) and iii) could be relaxed by
combining TEBM with (for example) subtype modelling [13] and semi-Markov
modelling [29], respectively. In particular, TEBM can be directly integrated into
the SuStaIn framework proposed by [13], which would allow us to capture the
well-reported heterogeneity in AD and produce timelines such as Fig. 3 for sep-
arate subtypes. This opens up the prospect of developing a probabilistic model
that can parsimoniously cluster temporal patterns of disease progression, and
hence identify clinically-interpretable longitudinal subtypes.
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